Or: Clifford—Munn—Ponizovskil theorem a.k.a. H-reduction



Cells in the theory of monoids
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» Cells order the monoid into equivalence classes of equal information

» Question Are cells useful to study monoid reps?

» Spoiler Simples «~ “conjugacy classes (of H(e)) + J-cells (apexes)”
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The simples for fish are 'not annihilated by fish, krill, zooplankton, phytoplankton

» J-cells are nicely ordered

» An apex is a maximal J-cell not annihilating a rep

» Theorem Simple monoid reps have a unique apex



Count per apex
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» The J-cell apexes order simples
» Within one J-cell we have the H-cells

» Theorem The H-cells count simple of a fixed apex



For completeness: A formal statement

The Clifford—Munn—Ponizovskii theorem a.k.a. H-reduction
» A J-cell is an apex < it contains an idempotent

» Every idempotent J-cell contains a subgroup #(e)

» There is a one-to-one correspondence
simples with] one-toone [ Simples of (any)

apex J(e) H(e) C J(e)

Reps of monoids are controlled by H(e)-cells
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We get 3 =1+ 2 simples/C for G;»



This is really powerful: reduce to H-cells
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» Above: H(e) are shaded

» For simple reps we only ever need to consider one H(e) per apex

» Analogy For 1000 huge matrices, picking one element per matrix suffices



| hope that was of some help.



