What is...Frobenius' character formula?

Or: Representations of symmetric groups, part 3

Searching for a character formula

- Simple reps of $S_n \leftrightarrow Y$ Young diagrams with n boxes
- ► Character of simple reps of $S_n \iff XYZ$ Young diagrams with *n* boxes
- Frobenius' character formula fills XYZ

Two Young diagrams

▶ We also know that conjugacy classes are index by Young diagrams

Goal Associate a number to any pair of Young diagrams

Enter, Frobenius' counting

$$x_1^3 x_2^1 \quad l_1 = 2 + 2 - 1 = 3, l_2 = 1 + 2 - 2 = 1$$

$$(x_1 - x_2)(x_1 + x_2)^4 = x_1^4 + 2 x_1^3 x_2^1 - 2x_1 x_2^3 - x_2^4$$

• Given
$$\lambda = (\lambda_1, ..., \lambda_k)$$
 and μ Young diagram

▶
$$l_s = \lambda_s + k - s = \text{length of rows} + \text{total length}$$
 - row number

- ► $i_s = \#$ columns of length s
- k variables x_1 to x_k
- From μ get a polynomial

$$P = \prod_{i < j} (x_i - x_j) \prod_j (x_1^j + ... + x_k^j)^{i_j}$$

• Look for the coefficient of
$$x_1^{l_1}...x_k^{l_k}$$
 in P

The character of χ_{λ} on μ can be computed by Frobenius' counting

Hook length formula

▶ Hook length formula = product of the hook length gives the dim of the simples

 \blacktriangleright Frobenius' character formula \Rightarrow hook length formula

Thank you for your attention!

I hope that was of some help.