What is...Frobenius' character formula?

Or: Representations of symmetric groups, part 3

Searching for a character formula

Class | 123

Size | 1 | | 3 |
| :--- | :--- | :--- |

Order | 123
$\stackrel{X Y Z}{\longleftrightarrow}$

$$
p=2113
$$

$$
p=31121
$$

$$
X .1+111
$$

$$
\text { X. } 2+1-11
$$

$$
X .3+20-1
$$

- Simple reps of S_{n} an Young diagrams with n boxes
- Character of simple reps of $S_{n} \longleftrightarrow$ XYZ Young diagrams with n boxes
- Frobenius' character formula fills $X Y Z$

Two Young diagrams

- We also know that conjugacy classes are index by Young diagrams
- Goal Associate a number to any pair of Young diagrams

Enter, Frobenius' counting

$$
\begin{gathered}
\square \square x_{1}^{3} x_{2}^{1} \quad l_{1}=2+2-1=3, l_{2}=1+2-2=1 \\
\square \quad \square \quad \ln \left(x_{1}+x_{2}\right)^{3} \quad i_{1}=3 \\
\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right)^{4}=x_{1}^{4}+2 x_{1}^{3} x_{2}^{1}-2 x_{1} x_{2}^{3}-x_{2}^{4}
\end{gathered}
$$

- Given $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ and μ Young diagram
- $I_{s}=\lambda_{s}+k-s=$ length of rows + total length - row number
- $i_{s}=\#$ columns of length s
- k variables x_{1} to x_{k}
- From μ get a polynomial

$$
P=\prod_{i<j}\left(x_{i}-x_{j}\right) \prod_{j}\left(x_{1}^{j}+\ldots+x_{k}^{j}\right)^{i_{j}}
$$

- Look for the coefficient of $x_{1}^{1_{1}} \ldots x_{k}^{y_{k}}$ in P

For completeness: A formal statement

The character of χ_{λ} on μ can be computed by Frobenius' counting

Another example

$\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right)=$
... $0 x_{1}^{4} x_{2}^{2} x_{3}+\ldots$
\Rightarrow character value is 0

Hook length formula

7	6	5	2	1
4	3	2		
3	2	1		

second row: $\square \square, \square, \square, \square$ 4, \square 4, 2
second row: $\square \square \square, \square \square, \square$ m 3,2,1

$$
\operatorname{dim} \text { is } \frac{11!}{7 \cdot 6 \cdot 5 \cdot 2 \cdot 1 \cdot 4 \cdot 3 \cdot 2 \cdot 3 \cdot 2 \cdot 1}=660
$$

- Hook length formula = product of the hook length gives the dim of the simples
- Frobenius' character formula \Rightarrow hook length formula

Thank you for your attention!

I hope that was of some help.

