What are...Specht modules?

Or: Representations of symmetric groups, part 2

Reps of S_n

▶ Simple S_n reps/ \mathbb{C} are in bijection with Young diagrams with *n* boxes

► Goal Make the bijection explicit

As a vector space

 $\blacktriangleright~S^{\lambda}$ has a basis given by all standard Young tableaux of shape λ

► The action should be "permute numbers" but that does not quite work

"Permute numbers"

- Define the action only for the simple transpositions (i, i + 1)
- Three different cases depending on i and i + 1:
 - Same row case Eigenvalue 1 plus error terms
 - Same column case Eigenvalue -1
 - Rest Permute

For all $\lambda \in \mathcal{P}(n)$ (set of partitions of *n*) there exists an S_n module S^{λ} such that: • A basis of S^{λ} is given by all standard tableaux of shape λ

- ▶ The action is "permute numbers" as before
- ▶ The S^{λ} are simple $/\mathbb{C}$
- The S^{λ} are pairwise nonisomorphic
- ▶ All simple S_n modules/ \mathbb{C} are of the form S^{λ} for some $\lambda \in \mathcal{P}(n)$

Die irreduziblen Darstellungen der symmetrischen Gruppe

Wilhelm Specht

Mathematische Zeitschrift 39, 696-711 (1935) Cite this article

Specht modules work integrally

- ▶ The matrices of Specht modules have integer entries
- Specht modules can thus be defined over any field
- Catch They are in general not simple

Thank you for your attention!

I hope that was of some help.