What are...Specht modules?

Or: Representations of symmetric groups, part 2

Reps of S_{n}

- Simple S_{n} reps $/ \mathbb{C}$ are in bijection with Young diagrams with n boxes
- Goal Make the bijection explicit

As a vector space

$$
\begin{gathered}
\lambda_{1}=\square, \quad S^{\lambda_{2}}=\mathbb{C}\left\{\begin{array}{|l|l|l}
\hline 1 & 2 & 3 \\
\hline
\end{array}\right\} \\
\lambda_{2}=\square, \quad S^{\lambda_{2}}=\mathbb{C}\left\{\begin{array}{|l|l|l|}
\hline 1 & 2 \\
\hline 3 & 1 & 3 \\
\hline 2 & \\
\hline
\end{array}\right\} \\
\lambda_{3}=\square, \quad S^{\lambda_{3}}=\mathbb{C}\left\{\begin{array}{|l|}
\hline 1 \\
\hline 2 \\
\hline 3
\end{array}\right\}
\end{gathered}
$$

- S^{λ} has a basis given by all standard Young tableaux of shape λ
- The action should be "permute numbers" but that does not quite work
"Permute numbers"

$$
\begin{aligned}
& \text { Same row: (12). } \begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 4 & & \\
\hline
\end{array}=\begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 4 & & \\
\hline
\end{array} \text { error terms } \\
& \text { Same column: (12). } \begin{array}{|l|l|l|}
\hline 1 & 3 & 4 \\
\hline 2 & & \\
\hline
\end{array} \\
& \text { Rest: (23). } \begin{array}{|l|l|l|}
\hline 1 & 2 & 4 \\
\hline 3 & & \\
\hline 1 & 3 & 4 \\
\hline 2 & & \\
\hline
\end{array}
\end{aligned}
$$

- Define the action only for the simple transpositions ($i, i+1$)
- Three different cases depending on i and $i+1$:
- Same row case Eigenvalue 1 plus error terms
- Same column case Eigenvalue -1
- Rest Permute

For completeness: A formal statement

For all $\lambda \in \mathcal{P}(n)$ (set of partitions of n) there exists an S_{n} module S^{λ} such that:

- A basis of S^{λ} is given by all standard tableaux of shape λ
- The action is "permute numbers" as before
- The S^{λ} are simple $/ \mathbb{C}$
- The S^{λ} are pairwise nonisomorphic
- All simple S_{n} modules $/ \mathbb{C}$ are of the form S^{λ} for some $\lambda \in \mathcal{P}(n)$

Die irreduziblen Darstellungen der symmetrischen Gruppe

Wilhelm Specht
Mathematische Zeitschrift 39, 696-711 (1935) Cite this article

Specht modules work integrally

$$
\begin{aligned}
& \text { (12). } \begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 &
\end{array}=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 &
\end{array}-\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 &
\end{array}, \quad(12) \cdot \begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 &
\end{array}=-\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 & \\
\hline
\end{array} \\
& \text { (23). } \begin{array}{|l|l}
\hline 1 & 2 \\
\hline 3 &
\end{array}=\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 &
\end{array}, \quad(23) \cdot \begin{array}{|l|l|}
\hline 1 & 3 \\
\hline 2 & \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & \\
\hline
\end{array} \\
& (12) \longleftrightarrow\left(\begin{array}{cc}
1 & 0 \\
-1 & -1
\end{array}\right) \xrightarrow{\bmod 3}\left(\begin{array}{ll}
1 & 0 \\
2 & 2
\end{array}\right) \\
& (23) ~ \leadsto\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \xrightarrow{\bmod 3}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

- The matrices of Specht modules have integer entries
- Specht modules can thus be defined over any field
- Catch They are in general not simple

Thank you for your attention!

I hope that was of some help.

