What are...representations?

Or: Matrices are cool!

From nonlinear to linear

- A group is a nonlinear object; a representation should be a linear object
- Why? Because "linear=easy"

Vectors and matrices

- A representation replaces geometric objects by vectors
- A representation replaces actions by matrices

Groups in matrices

- The assignment

$$
1 \mapsto\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), g \mapsto\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), h \mapsto\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

is a representation of $\mathbb{Z} / 3 \mathbb{Z}$

- This transfers questions about $\mathbb{Z} / 3 \mathbb{Z}$ to linear algebra

A representation of a group G on a \mathbb{K}-vector space V is a group homomorphism

$$
\phi: G \rightarrow \operatorname{Aut}(V)=\mathrm{GL}(V)
$$

- $\phi_{g}=\phi(g)$ is a matrix!
- There is always the trivial representation $g \mapsto(1)$
- The ground field plays a crucial role and G-representation might vary with \mathbb{K}
- Representations work more generally, e.g. for Lie groups

Efficiency!?

- Groups might have very efficient representations
- Example The quaternion group of order 8 can be faithfully represented on \mathbb{C}^{2} :

$$
\begin{array}{llll}
e \mapsto\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) & i \mapsto\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right) & j \mapsto\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) & k \mapsto\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right) \\
\bar{e} \mapsto\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right) & \bar{i} \mapsto\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right) & \bar{j} \mapsto\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) & \bar{k} \mapsto\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
\end{array}
$$

Thank you for your attention!

I hope that was of some help.

