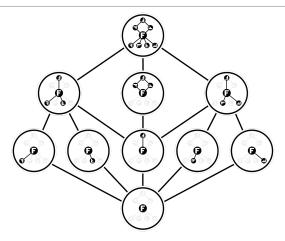
What are...induction and restriction?

Or: How to find lost information! Kind of ...

Forgetting is easy

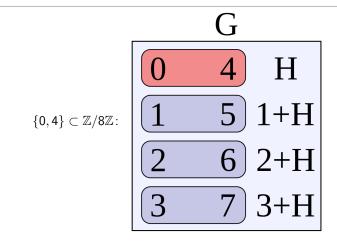


▶ ϕ : $G \to \operatorname{GL}(V)$, $H \subset G$ subgroup \Rightarrow restricted rep $\operatorname{Res}_{G}^{H}(\phi)$: $H \to \operatorname{GL}(V)$

▶ $\operatorname{Res}_{G}^{H}(\phi)$ is obtained from ϕ by forgetting matrices

▶ Is there an "inverse" process?

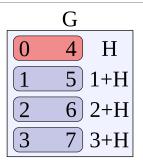
Recover lost information is tricky



- ▶ Say we look at cosets of $\{0,4\} \cong \mathbb{Z}/2\mathbb{Z} = H$ in $\mathbb{Z}/8\mathbb{Z} = G$
- ► A representation ϕ of *H* contains 25% of the information [G:H] = 4

▶ Idea Make ϕ 4 times as big and force the values for 1+H, 2+H, 3+H to work

 $\mathbb{Z}/2\mathbb{Z}$ in $\mathbb{Z}/8\mathbb{Z}$



Say we have $0 \mapsto 1$, $4 \mapsto -1$. Where should we send 1? It should be

$$\begin{array}{c} \text{first row} : -0 + 1 + i \\ 1 \mapsto \begin{pmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} & \text{second row} : -1 + 1 + i \\ \text{third row} : -2 + 1 + i \\ \text{fourth row} : -3 + 1 + i \end{array}$$

Why? Because this forces the correct behavior!

Let $H \subset G$ be a subgroup, ϕ a G rep, ψ an H rep

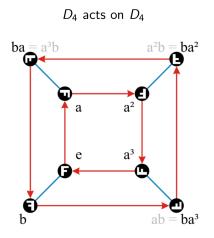
The restriction Res^H_G(φ) is obtained by restricting the action map
The induction Ind^G_H(ψ) is obtained by

$$\varphi_{g}^{G} = \begin{bmatrix} \dot{\varphi}_{t_{1}^{-1}gt_{1}} \ \dot{\varphi}_{t_{1}^{-1}gt_{2}} & \cdots & \dot{\varphi}_{t_{1}^{-1}gt_{m}} \\ \dot{\varphi}_{t_{2}^{-1}gt_{1}} \ \dot{\varphi}_{t_{2}^{-1}gt_{2}} & \cdots & \vdots \\ \vdots & \vdots & \ddots & \dot{\varphi}_{t_{m-1}gt_{m}} \\ \dot{\varphi}_{t_{m}^{-1}gt_{1}} \ \cdots \ \dot{\varphi}_{t_{m}^{-1}gt_{m-1}} \ \dot{\varphi}_{t_{m}^{-1}gt_{m}} \end{bmatrix}$$

where $t_1, ..., t_m$ are coset representatives and

$$\dot{\varphi}_x = \begin{cases} \varphi_x & x \in H \\ 0 & x \notin H \end{cases}$$

Example



- The regular representation is $\operatorname{Ind}_1^G(1)$
- ▶ Why? Well, $t_i^{-1}gt_j = 1$ implies $gt_j = t_i$ which is the action on itself

Thank you for your attention!

I hope that was of some help.