What is...the regular representation?

Or: Action on itself

Dihedral groups

▶ Dihedral groups $D_n = \langle a, b \rangle$ are the symmetry groups of *n*gons

Slight problem D_n has 2n elements, but ngons gives a vector space of dim n

Action on itself

- ► Every group can act on itself
- \blacktriangleright The underlying geometric object can be thought of as the Cayley graph
- ► The linear version is called the regular representation

 D_4 acts on $\mathbb{C}[D_4]$

 $id, b \leftrightarrow b$ Not displayed - no space

- The trace of *id* on $\mathbb{C}[D_4]$ is 8
- ▶ The traces of *a* and *b* on $\mathbb{C}[D_4]$ are zero

The regular rep R is the \mathbb{K} -vector space $\mathbb{K}[G]$ with action by left multiplication

- ▶ Strictly speaking this should be called left regular rep
- ▶ The regular rep makes sense for any group
- ▶ Its dimension is always |G|

Cool facts (easy to show):

▶ We have the character table

	Class	1	2	3	
R:	Size	1	C_2	<i>C</i> ₃	
	ξR	<i>G</i>	0	0	

• For $\mathbb{K} = \mathbb{C}$ we have

 $R \cong L_1^{\oplus \dim L_1} \oplus \dots \oplus L_r^{\oplus \dim L_r}$ $\xi_R = \dim L_1 \cdot \chi_1 + \dots + \dim L_r \cdot \chi_r$

and all simple reps L_k appear

▶ The regular representation is

 $R \cong L_1 \oplus L_2 \oplus L_3 \oplus L_4 \oplus L_5 \oplus L_5$ L₅ appears twice

• Weighted sum of columns = |G| respectively = 0 Numerical miracle

Thank you for your attention!

I hope that was of some help.