What is...the regular representation?

Or: Action on itself

Dihedral groups

- Dihedral groups $D_{n}=\langle a, b\rangle$ are the symmetry groups of ngons
- Slight problem D_{n} has $2 n$ elements, but ngons gives a vector space of dim n

Action on itself

- Every group can act on itself
- The underlying geometric object can be thought of as the Cayley graph
- The linear version is called the regular representation

D_{4} acts on $\mathbb{C}\left[D_{4}\right]$

$i d, b \rightarrow m \rightarrow$ Not displayed - no space

- The trace of id on $\mathbb{C}\left[D_{4}\right]$ is 8
- The traces of a and b on $\mathbb{C}\left[D_{4}\right]$ are zero

The regular rep R is the \mathbb{K}-vector space $\mathbb{K}[G]$ with action by left multiplication

- Strictly speaking this should be called left regular rep
- The regular rep makes sense for any group
- Its dimension is always $|G|$

Cool facts (easy to show):

- We have the character table

$R:$| Class | 1 | 2 | 3 | \ldots |
| :---: | :---: | :---: | :---: | :---: |
| Size | 1 | C_{2} | C_{3} | \ldots |
| ξ_{R} | $\|G\|$ | 0 | 0 | \ldots |

- For $\mathbb{K}=\mathbb{C}$ we have

$$
R \cong L_{1}^{\oplus \operatorname{dim} L_{1}} \oplus \ldots \oplus L_{r}^{\oplus \operatorname{dim} L_{r}}
$$

$$
\xi_{R}=\operatorname{dim} L_{1} \cdot \chi_{1}+\ldots+\operatorname{dim} L_{r} \cdot \chi_{r}
$$

and

More semisimple miracles

$$
\begin{aligned}
& \begin{array}{l|lllll}
\text { Class } & 1 & 2 & 3 & 4 & 5 \\
\text { Size } & 1 & 1 & 2 & 2 & 2 \\
\text { Order } & 1 & 2 & 2 & 2 & 4
\end{array} \\
& \text { G:= DihedralGroup (4); } \quad p=2 \quad 1 \quad 1 \quad 1 \quad 1 \quad 2 \\
& \text { CT : CharacterTable(G); } \\
& \text { CT; } \\
& \mathrm{X} .1+111111 \\
& \mathrm{X} .2+11 \text {-1 } 1 \text {-1 } \\
& \text { X. } 3+1 \text { 1-1-1 } \\
& \mathrm{X} .4+11-1-11 \\
& \text { X. } 5+2-2000
\end{aligned}
$$

- The regular representation is

$$
R \cong L_{1} \oplus L_{2} \oplus L_{3} \oplus L_{4} \oplus L_{5} \oplus L_{5} \quad L_{5} \text { appears twice }
$$

- Weighted sum of columns $=|G|$ respectively $=0$ Numerical miracle

Thank you for your attention!

I hope that was of some help.

