What are...Schur's orthogonality relations?

Or: An orthonormal basis

Let us look at S_3

► Define an inner product by

$$\langle \chi, \xi \rangle = \frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{\xi(g)}$$

▶ The orthogonality relations for simple characters are

$$\langle \chi, \xi \rangle = \begin{cases} 1 & \text{if } \chi = \xi \\ 0 & \text{else} \end{cases}$$

What about non-simple reps?

- $\blacktriangleright \ \langle \xi, \xi \rangle = \text{20 which is not 1}$
- ξ is not simple

Can we decompose them?

$$\blacktriangleright \langle \xi, \chi_1 \rangle = 4, \ \langle \xi, \chi_2 \rangle = 0, \ \langle \xi, \chi_3 \rangle = 2$$

▶ It follows that

►

$$\xi = 4 \cdot \chi_1 + 2 \cdot \chi_3$$

The same decomposition then holds for the reps!

$$V_{\xi}\cong L_1^{\oplus 4}\oplus L_3^{\oplus 2}$$

The simple characters are an orthonormal basis of all class functions

- \blacktriangleright A class function is a function $G \rightarrow \mathbb{C}$ constant on conjugacy classes
- ► The inner product is

$$\langle \chi, \xi \rangle = \frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{\xi(g)}$$

$$\blacktriangleright \ \langle \chi, \chi \rangle = 1 \iff \chi \text{ is simple}$$

simple characters = # conjugacy classes

The orthogonality relations can aid many computations including:

- Decomposing an unknown character as a linear combination of simple characters
- Constructing the complete character table when only some of the simple characters are known
- ► Finding the order of the group

Constructing simple characters

					ОПЫТЪ СИСТЕМЫ ЭЛЕМЕНТОВЪ, основанной на ихъ атомномъ въсъ и химическомъ сходствъ
Class		1	2	3	Ti=50 Zr= 90 2=180.
Size	1	1	3	2	V=51 Nb= 94 Ta=182.
JIZC		- -	5	2	Cr=52 Mo= 96 W=186.
0		-	2	2	Mn=55 Rh=104,4 Pt=197,1.
0rder		1	2	3	Fe=56 Ru=104,4 Ir=198.
					Ni=Co=59 Pd=106,6 Os=199.
					H=1 Cu=63,4 Ag=108 Hg=200.
					Be= 9,4 Mg=24 Zn=65,2 Cd=112
n –	2	1	1	3	B=11 Al=27,3 ?=68 Ur=116 Au=197?
p =	2	T	-	5	C=12 Si=28 ?=70 Sn=118
	2	1	2	1	N=14 P=31 As=75 Sb=122 Bi=210?
p =	3	1	2	1	O=16 S=32 Se=79,4 Te=128?
					F=19 Cl=35,5 Br=80 I=127
					Li=7 Na=23 K=39 Rb=85,4 Cs=133 Tl=204.
					Ca=40 Sr=87,6 Ba=137 Pb=207.
X.1	+	1	1	1	?=45 Ce=92
X. 1		-	-	-	?Er=56 La=94
X.2		1	-1	1	?Yt=60 Di=95
A.Z	+	1	- T	1	?In=75,6 Th=118?
× >		2	•	-	
X.3	+	2	0	-1	П. Мендельевь
					д. мендельевь

If we wouldn't know the bottom simple character, then we could construct it by solving for a ∈ N, b, c ∈ C:

$$1 \cdot 1 \cdot a + 3 \cdot 1 \cdot b + 2 \cdot 1 \cdot c = 0$$

$$1 \cdot 1 \cdot a + 3 \cdot (-1) \cdot b + 2 \cdot 1 \cdot c = 0$$

$$1 \cdot a \cdot a + 3 \cdot b \cdot b + 2 \cdot c \cdot c = 6$$

Warning This is not how you want to do it in general

Thank you for your attention!

I hope that was of some help.