What are...Schur's orthogonality relations?

Or: An orthonormal basis

Let us look at S_{3}

- Define an inner product by

$$
\langle\chi, \xi\rangle=\frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{\xi(g)}
$$

- The orthogonality relations for simple characters are

$$
\langle\chi, \xi\rangle= \begin{cases}1 & \text { if } \chi=\xi \\ 0 & \text { else }\end{cases}
$$

What about non-simple reps?

$$
S_{3} \text { acts on } \mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}, \mathbb{C}^{2}=\mathbb{C}\left\{e_{1}, e_{2}\right\}
$$

e.g. $e_{1} \otimes e_{2} \otimes e_{1} \mapsto e_{2} \otimes e_{1} \otimes e_{1}$

character is ξ with | Class | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| Size | 1 | 3 | 2 |
| ξ | 8 | 4 | 2 |

- $\langle\xi, \xi\rangle=20$ which is not 1
- ξ is not simple

Can we decompose them?

- $\left\langle\xi, \chi_{1}\right\rangle=4,\left\langle\xi, \chi_{2}\right\rangle=0,\left\langle\xi, \chi_{3}\right\rangle=2$
- It follows that

$$
\xi=4 \cdot \chi_{1}+2 \cdot \chi_{3}
$$

The same decomposition then holds for the reps!

$$
V_{\xi} \cong L_{1}^{\oplus 4} \oplus L_{3}^{\oplus 2}
$$

For completeness: A formal statement

The simple characters are an orthonormal basis of all class functions

- A class function is a function $G \rightarrow \mathbb{C}$ constant on conjugacy classes
- The inner product is

$$
\langle\chi, \xi\rangle=\frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{\xi(g)}
$$

- $\langle\chi, \chi\rangle=1 \Leftrightarrow \chi$ is simple
- \# simple characters = \# conjugacy classes

The orthogonality relations can aid many computations including:

- Decomposing an unknown character as a linear combination of simple characters
- Constructing the complete character table when only some of the simple characters are known
- Finding the order of the group

Constructing simple characters

ОПЫТТ СИСТЕМЫ ЭЛЕМЕНТОВЪ,
основанНОЙ нА ихъ АТОмНомъ въсъ и химическомъ сход

			$\mathrm{Ti}=50$	$\mathbf{Z r}=90$	$?=180$.
			$\mathrm{V}=51$	$\mathrm{Nb}=94$	$\mathrm{Ta}=182$.
			$\mathrm{Cr}=52$	$\mathrm{Mo}=96$	$\mathrm{W}=186$.
			$\mathrm{Mn}=55$	Rh=104,4	$\mathrm{Pt}=197,1$.
			$\mathrm{Fe}=56$	Ru=104,4	$\mathrm{Ir}=198$.
			Co=59	Pd=106, 6	$\mathrm{Os}=199$.
$\mathrm{H}=1$			$\mathrm{Cu}=63,4$	Ag=108	$\mathrm{Hg}=200$.
	$\mathrm{Be}=9,4$	$\mathrm{Mg}=24$	Zn=65,2	Cd=112	
	$\mathrm{B}=11$	Al=27,3	$?=68$	Ur=116	$\mathrm{Au}=197$?
	$\mathrm{C}=12$	$\mathbf{S i = 2 8}$?=70	Sn=118	
	$\mathrm{N}=14$	$\mathrm{P}=31$	As=75	$\mathrm{Sb}=122$	$\mathrm{Bi}=210$?
	$\mathrm{O}=16$	$\mathrm{S}=32$	$\mathrm{Se}=79,4$	Te=128?	
	$\mathrm{F}=19$	$\mathrm{Cl}=35,5$	$\mathrm{Br}=80$	$\mathrm{I}=127$	
Li=7	$\mathrm{Na}=23$	$\mathrm{K}=39$	$\mathrm{Rb}=85,4$	Cs=133	Tl=204.
		$\mathrm{Ca}=40$	Sr=87,6	$\mathrm{Ba}=137$	$\mathrm{Pb}=207$.
		?=45	Ce=92		
		?Er=56	La=94		
		?Yt=60	Di=95		
		? $\mathbf{I n}=\mathbf{7 5 , 6}$	Th=118?		

- If we wouldn't know the bottom simple character, then we could construct it by solving for $a \in \mathbb{N}, b, c \in \mathbb{C}$:

$$
\begin{gathered}
1 \cdot 1 \cdot a+3 \cdot 1 \cdot b+2 \cdot 1 \cdot c=0 \\
1 \cdot 1 \cdot a+3 \cdot(-1) \cdot b+2 \cdot 1 \cdot c=0 \\
1 \cdot a \cdot a+3 \cdot b \cdot b+2 \cdot c \cdot c=6
\end{gathered}
$$

Warning This is not how you want to do it in general

Thank you for your attention!

I hope that was of some help.

