What is...a character table?

Or: The gist of the matter!?

The first ever published character table?

lnung 3 zwei inverse Classen (2) und $(3)=\left(2^{\prime}\right)$. Sei ρ eine prin Dische Wurzel der Einheit.

Tetraeder. $h=12$					
	$\chi^{(0)}$	$\chi^{(1)}$	$\chi^{(2)}$	$\chi^{(3)}$	h_{a}
χ_{0}	1	3	1	1	1
χ_{1}	1	-1	1	1	3
χ_{2}	1	0	ρ	ρ^{2}	4
χ_{3}	1	0	ρ^{2}	ρ	4

Die Werthe von χ_{0} sind zugleich die von $f=e$.

- Frobenius' character table of $A_{4} \sim 1896$
- Character tables were around since the beginning of rep theory
- They contain basically all info about group reps in an efficient way

What a character table encodes - Part I

Alternating group A_{4} of order 12

	χ_{1}	χ_{2}	χ_{3}	χ_{4}	$\#$
C_{1}	1	3	1	1	1
C_{2}	1	-1	1	1	3
C_{3}	1	0	ρ	ρ^{2}	4
C_{4}	1	0	ρ^{2}	ρ	4
$\rho=\exp (2 \pi i / 3)$					

- $C_{i}=$ conjugacy classes; $\chi_{i}=$ simple characters over \mathbb{C}
- Square matrix in the middle $=$ character values on the C_{i}
- Right column $=$ size of the C_{i}
- Number of $C_{i}=$ number of χ_{i} Char tables are squares
- Second row $=$ dim of simple reps Char on id
- \sum Squares second row $=$ order of the group $=$ sum of the right column

What a character table encodes - Part II

Alternating group A_{4} of order 12

	χ_{1}	χ_{2}	χ_{3}	χ_{4}	$\#$
C_{1}	1	3	1	1	1
C_{2}	1	-1	1	1	3
C_{3}	1	0	ρ	ρ^{2}	4
C_{4}	1	0	ρ^{2}	ρ	4
$\rho=\exp (2 \pi i / 3)$					

- The rows are orthogonal, for example

$$
(1,3,1,1) \perp(1,-1,1,1) \text { since } 1 \cdot 1+3 \cdot(-1)+1 \cdot 1+1 \cdot 1=0
$$

- The columns are weighted orthogonal, for example

$$
(1,1,1,1) \perp_{\# c_{i}}\left(1,1, \rho, \rho^{2}\right) \text { since } 1 \cdot 1 \cdot 1+1 \cdot 1 \cdot 3+1 \cdot \rho \cdot 4+1 \cdot \rho^{2} \cdot 4=0
$$

For completeness: A formal definition

Rows are labeled by simple characters, columns by conjugacy classes The square matrix has the values of the characters on conjugacy classes

	(1)	(12)	(123)
$X_{\text {triv }}$	1	1	1
$\chi_{\text {sgn }}$	1	-1	1
$\chi_{\text {stand }}$	2	0	-1

Careful: this is quite standard by now but transpose to Frobenius' notation

Properties of character tables over \mathbb{C}

- It is square meaning \# simple chars = \# conjugacy classes
- 1st column contains the simple dims; the sum of their squares is $|G|$
- The columns are orthogonal
- The rows are weighted orthogonal

Characters online

Character table of \mathbf{D}_{4}

D_{4} : Dihedral group; $=\mathrm{He}_{2}=\mathrm{A} \Sigma \mathrm{L}_{1}\left(\mathbb{F}_{4}\right)=2_{+}{ }^{1+2}=$ square symmetries

class	1	2 A	2 B	2 C	4	
size	1	1	2	2	2	
ρ_{1}	1	1	1	1	1	trivial
ρ_{2}	1	1	-1	1	-1	linear of order 2
ρ_{3}	1	1	1	-1	-1	linear of order 2
ρ_{4}	1	1	-1	-1	1	linear of order 2
ρ_{5}	2	-2	0	0	0	orthogonal faithful

G := Alt(4);
 CT := CharacterTable(G); CT;

- It is nowadays very efficient to look up char tables online
- Conventions might vary, but its still fun A few links are in the description

Thank you for your attention!

I hope that was of some help.

