What is...a character table?

Or: The gist of the matter!?

The first ever published character table?

dnung 3 zwei inverse Classen (2) und (3) = (2'). Sei ρ eine prin Dische Wurzel der Einheit.

Tetraeder. h = 12.

Die Werthe von χ_0 sind zugleich die von f = e.

• Frobenius' character table of A_4 ~1896

Character tables were around since the beginning of rep theory

► They contain basically all info about group reps in an efficient way

What a character table encodes - Part I

	χ_1	χ_2	$\chi_{ m 3}$	χ_{4}	#
C_1	1	3	1	1	1
C_2	1	-1	1	1	3
<i>C</i> ₃	1	0	ρ	ρ^2	4
<i>C</i> ₄	1	0	ρ^2	ρ	4
	f	$p = \exp($	$(2\pi i/3)$		

Alternating group A_4 of order 12

- C_i = conjugacy classes; χ_i = simple characters over $\mathbb C$
- Square matrix in the middle = character values on the C_i
- Right column = size of the C_i
- Number of C_i = number of χ_i Char tables are squares
- ► Second row = dim of simple reps Char on id

• \sum Squares second row = order of the group = sum of the right column

► The rows are orthogonal , for example

 $(1,3,1,1) \perp (1,-1,1,1)$ since $1 \cdot 1 + 3 \cdot (-1) + 1 \cdot 1 + 1 \cdot 1 = 0$

► The columns are weighted orthogonal, for example

 $(1,1,1,1) \perp_{\#C_i} (1,1,\rho,\rho^2)$ since $1 \cdot 1 \cdot 1 + 1 \cdot 1 \cdot 3 + 1 \cdot \rho \cdot 4 + 1 \cdot \rho^2 \cdot 4 = 0$

Rows are labeled by simple characters, columns by conjugacy classes The square matrix has the values of the characters on conjugacy classes

	(1)	(12)	(123)
Xtriv	1	1	1
Xsgn	1	-1	1
Xstand	2	0	-1

Careful: this is quite standard by now but transpose to Frobenius' notation

Properties of character tables over $\ensuremath{\mathbb{C}}$

- ▶ It is square meaning # simple chars = # conjugacy classes
- ▶ 1st column contains the simple dims; the sum of their squares is |G|
- ► The columns are orthogonal
- ▶ The rows are weighted orthogonal

Character table of D₄

D₄: Dihedral group; = He₂ = $A\Sigma L_1(\mathbb{F}_4) = 2^{1+2}_+$ = square symmetries

class	1	2A	2B	2C	4	
size	1	1	2	2	2	
ρ1	1	1	1	1	1	trivial
ρ2	1	1	-1	1	-1	linear of order 2
ρ ₃	1	1	1	-1	-1	linear of order 2
ρ4	1	1	-1	-1	1	linear of order 2
ρ ₅	2	-2	0	0	0	orthogonal faithful

G := Alt(4); CT := CharacterTable(G); CT;

▶ It is nowadays very efficient to look up char tables online

► Conventions might vary, but its still fun A few links are in the description

Thank you for your attention!

I hope that was of some help.