What are...characters?

Or: Polynomials!

To each rep I want an associated numerical invariant

Numerical invariant = something like a number

The invariant should behave nicely wrt operations on reps

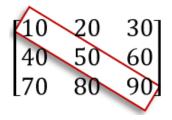
The invariant should determine the rep

► The idea of invariants is ubiquitous in mathematics/the sciences

So let's apply it in rep theory!

► However, the last point sounds impossible

Traces!



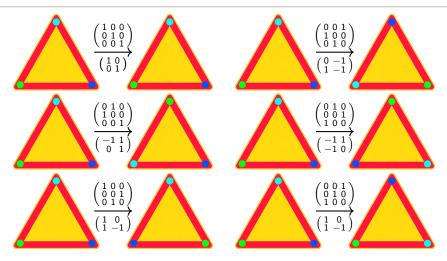
$$egin{aligned} \operatorname{tr}(\mathbf{A}+\mathbf{B}) &= \operatorname{tr}(\mathbf{A}) + \operatorname{tr}(\mathbf{B}) \ \operatorname{tr}(c\mathbf{A}) &= c\operatorname{tr}(\mathbf{A}) \ \operatorname{tr}(\mathbf{A}\mathbf{B}) &= \operatorname{tr}(\mathbf{B}\mathbf{A}) \end{aligned}$$

$$\operatorname{tr}(\mathbf{A}\otimes\mathbf{B})=\operatorname{tr}(\mathbf{A})\operatorname{tr}(\mathbf{B})$$

► Traces are invariant under base change

► Traces are like polynomials

$\textbf{Permutation} = \textbf{trivial} \oplus \textbf{standard}$

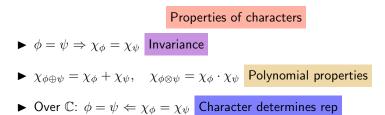


Traces are 3|1|2, 1|1|0, 1|1|0, 0|1|-1, 0|1|-1, 1|1|0 for perm—stand—triv

► Trace(perm)=Trace(triv)+Trace(stand) \Leftrightarrow ? $V_{perm} \cong L_{triv} \oplus L_{stand}$

 ϕ a *G*-representation on a \mathbb{K} -vector space *V*; the character χ_{ϕ} is the map

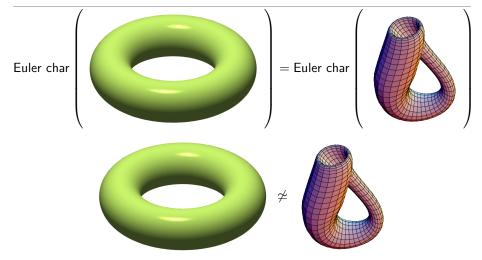
$$\chi_{\phi} \colon \mathcal{G} \to \mathbb{K}, \mathcal{g} \mapsto \operatorname{tr}(\phi_{\mathcal{g}})$$



• Characters are constant on conjugacy classes

	(1)	(12)	(123)
Xtriv	1	1	1
Xsgn	1	-1	1
Xstand	2	0	-1

The finite group miracle



▶ Over \mathbb{C} : $\phi = \psi \Leftrightarrow \chi_{\phi} = \chi_{\psi}$ Character determines rep

► Analogs in other fields are often very wrong

Thank you for your attention!

I hope that was of some help.