What is...(236c) ${ }^{11}$?

Or: That is a polynomial in c !

Reidemeister moves

- Reidemeister theorem Two shadows present the same knot \Leftrightarrow they are related by RI, RII, RIII moves and isotopies
- Question How many Reidemeister moves do we need to go between shadows?

Shadows of the unknot

- The above shadow of the unknot is called a culprit
- We need 10 Reidemeister moves to undo it
- Question How many Reidemeister moves do we need at most to undo all shadows of the unknot?

Well, that seems to be hard...

- The above shadow of the unknot needs a lot of Reidemeister moves to undo it
- Is there any hope to get a bound in the number of crossings?

Enter, the theorem

Any shadow of the unknot with c crossings can be undone using
at most $(236 c)^{11}$ Reidemeister moves

- The upper bound often overcounts:

Need 10 Reidemeister moves

The bound is 12648296352731771241601433600000000000 Reidemeister moves

- We never need more than $(7 c)^{2}$ crossings for the shadows during undoing
- Great upshot:
testing unknottedness can be done in exponential time

Unknotting is hard...

- There are "hard" unknot shadows for any big enough c
- One needs at least $\frac{1}{25} c^{2}$ moves as an upper bound
- Unknotting is in co-NP (proven ~ 2021), but not much more is known

Thank you for your attention!

I hope that was of some help.

