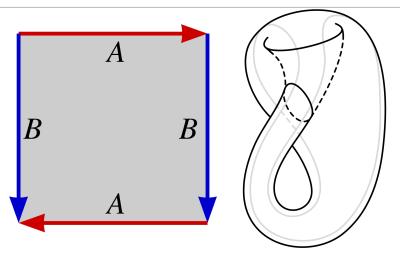
What is...Whitney's embedding theorem?

Or: Projective spaces are nasty

Manifolds = many discs

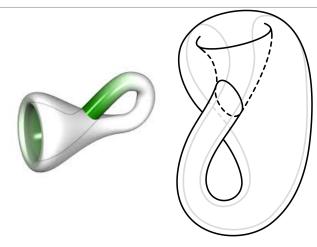
- Manifold (mfd) = discs glued together
- Examples are sphere, torus, pair of pants, ...
- Question Given an *n*-manifold, what is the smallest \mathbb{R}^k it lives in?

The Klein bottle



- ▶ Sphere, torus, pair of pants clearly live in \mathbb{R}^3 Maybe you have some at home!
- ▶ The Klein bottle is a surface (2d mfd) obtained from a square by identifying edges
- ▶ The Klein bottle can not be embedded in \mathbb{R}^3 , but can be immersed

Colors are distinct



- ▶ Think of the fourth dimension as color
- ► Then the Klein bottle does not intersect itself
- ▶ In other words, the Klein bottle lives in 4d

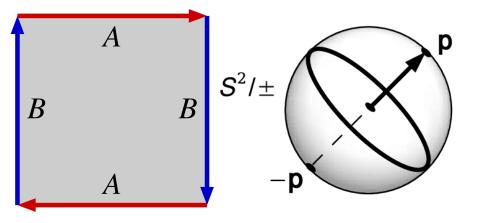
Let *M* be a smooth *n*-manifold for $n \ge 2$, then: (i) *M* can be smoothly embedded in \mathbb{R}^{2n} Lives in 2n dim (ii) *M* can be immersed in \mathbb{R}^{2n-1} It shadow lives in 2n-1 dim

▶ One can often do better, *e.g.* S^n embeds into \mathbb{R}^{n+1}

▶ If $n \neq 2^k$, then \mathbb{R}^{2n-1} suffices for an embedding for compact connected *n*-mfds

Projective spaces are the party poopers for $n = 2^k$

We can't do better



- ▶ The real projective space $\mathbb{R}P^n$ of dim $n = 2^k$ can not be embedded in \mathbb{R}^{2n-1}
- ▶ The real projective space $\mathbb{R}P^n$ of dim $n = 2^k$ can not be immersed in \mathbb{R}^{2n-2}
- ► Thus, Whitney's theorems are optimal

Thank you for your attention!

I hope that was of some help.