What is...the square ice constant?

Or: Ice and 1.539601...

The mathematics of macrostates

STATISTICAL MECHanics

- Statistical mechanics is a branch of physics that pervades all other branches
- Very often physical systems are modeled
- Experience tells us that real world models \Rightarrow nice mathematics

Ice modeled (we ignore whether the model makes sense physically...)

- Ice forms a crystal of which we think a living on an $n \times n$ square lattice
- Orient the lattice according to the bonding
- We get an orientation for a square graph

Consider the limit

- In order to avoid boundary nonsense we think of this as living on a torus
- Eulerian orientation = each vertex has two incoming and two outgoing edges
- Goal Count the number of Eulerian orientations on an nxn square for $n \rightarrow \infty$
- Note that Eulerian orientations are the ones that make sense physically

Enter, the theorem

The number of Eulerian orientations f_{n} satisfies

$$
\lim _{n \rightarrow \infty} \sqrt[2 n]{f_{n}}=\frac{8 \sqrt{3}}{9} \approx 1.539601 \ldots
$$

- The number f_{n} itself approaches ∞

$$
n=3 \text { has } f_{n}=7:
$$

- $1.539601 \ldots=$ Lieb's square ice constant
- This relates to the residual entropy of square ice via the six vertex model
- Counting f_{n} for other lattices (like other ice lattices) is very difficult

Tilings and ice

- The six local states correspond to six tilting patterns
- This was used to give an ice-model-proof of the alternating-sign matrix conjecture

Thank you for your attention!

I hope that was of some help.

