What is...a pointwise coloring of the plane?

Or: The chromatic number of the plane

- We want to assign a color to each point in the plane E^{2}
- ...such that no two points of the same color are unit distance apart
- Problem Find the minimal number $\chi\left(E^{2}\right)$ of colors

A lower bound

- Idea Phrase this problem in terms of colorings for unit distance graphs
- Above a unit distance graph that needs four colors
- Hence, we get the lower bound $4 \leq \chi\left(E^{2}\right)$

An upper bound

- The hexagon tessellation is seven colorable
- Using diameter slightly less than one gives a coloring of the plane
- Hence, we get the upper bound $\chi\left(E^{2}\right) \leq 7$

Enter, the theorem(s)

$$
4 \leq \chi\left(E^{2}\right) \leq 7
$$

- Actually $5 \leq \chi\left(E^{2}\right) \leq 7$: in 2018 a >1000-vertex unit distance graph was found with a computer

- There are unit distance graph with chromatic number 5 and ≤ 509 vertices

Enter, the axioms of set theory

- Construct the unit distance graph G with vertices $=E^{2}$ and edges

$$
(a \leftrightarrow b) \Leftrightarrow\left(a-b \in \mathbb{Q}^{2},|a-b|=1\right)
$$

- Theorem (rough version) If the axiom of choice holds, then $\chi(G)=2$ and otherwise $3 \leq \chi(G) \leq 7$
- Something similar might be true for $\chi\left(E^{2}\right)$ itself (but this became unlikely with the lower bound 5)

Thank you for your attention!

I hope that was of some help.

