What is...Hadwiger's conjecture?

Or: Coloring is difficult...

Four colors suffice

- ▶ Four color theorem (4CT) Any map can be colored with four colors
- Proposes in 1852 when Guthrie tried to color the map of counties of England, proved in 1976 by Appel–Haken
- ▶ The proof is one of the main achievements in graph theory

A different perspective on the 4CT

Complete bipartite graph on 6 vertices $K_{3,3}$ Complete graph on 5 vertices K_5

- Wagner's theorem A graph is planar \Leftrightarrow no $K_{3,3}$ or K_5 minors
- Coloring = adjacent vertices get different colors
- 4CT reformulated(?) A graph with at most a K_4 minor is 4-colorable

Where is $K_{3,3}$?

• Not that $K_{3,3}$ is bipartite = 2-colorable

- Any graph with \geq one edge needs at least 2 colors
- ▶ Hence, $K_{3,3}$ should not play any role for the colorability

Conjecture (1943)

If G is loopless and has no K_t minor then its chromatic number is < t

- Theorem The case t = 5 is true (4CT proven 1976)
- Theorem The case t = 6 is true (proven in 1993)
- ▶ t > 6 is open, but: Theorem The conjecture is almost always true:

Hadwiger's Conjecture is True for Almost Every Graph

B. BOLLOBÁS, P. A. CATLIN* AND P. ERDÖS

The contraction clique number ccl(G) of a graph G is the maximal r for which G has a subcontraction to the complete graph K^r . We prove that for d > 2, almost every graph of order n satisfies $n((\log_2 n)^{\frac{1}{2}}+4)^{-1} \le ccl(G) \le n(\log_2 n - d \log_2 \log_2 n)^{-\frac{1}{2}}$. This inequality implies the statement in the title.

The bound need not to be sharp

• The Petersen graph contains a K_5 minor

► The Petersen graph is 3 -colorable

Thank you for your attention!

I hope that was of some help.