What is...Hadwiger's conjecture?

Or: Coloring is difficult...

Four color theorem (4CT) Any map can be colored with four colors

- Proposes in 1852 when Guthrie tried to color the map of counties of England, proved in 1976 by Appel-Haken
- The proof is one of the main achievements in graph theory

A different perspective on the 4CT

Complete bipartite graph on 6 vertices $K_{3,3}$ Complete graph on 5 vertices K_{5}

Wagner - top to bottom A graph is planar if and only if it does not contain

$$
K_{3,3} \text { or } K_{5} \text { as a minor }
$$

Wagner's theorem A graph is planar \Leftrightarrow no $K_{3,3}$ or K_{5} minors

- Coloring $=$ adjacent vertices get different colors
- 4CT reformulated(?) A graph with at most a K_{4} minor is 4 -colorable

Where is $K_{3,3}$?

- Not that $K_{3,3}$ is bipartite $=2$-colorable
- Any graph with \geq one edge needs at least 2 colors
- Hence, $K_{3,3}$ should not play any role for the colorability

Enter, the theorem(s)

Conjecture (1943)
If G is loopless and has no K_{t} minor then its chromatic number is $<t$

- Theorem The case $t=5$ is true (4CT proven 1976)
- Theorem The case $t=6$ is true (proven in 1993)
- $t>6$ is open, but: Theorem The conjecture is almost always true:

Hadwiger's Conjecture is True for Almost Every Graph

B. Bollobás, P. A. Catlin* and P. Erdös

The contraction clique number $\operatorname{ccl}(G)$ of a graph G is the maximal r for which G has a subcontraction to the complete graph K^{r}. We prove that for $d>2$, almost every graph of order n satisfies $n\left(\left(\log _{2} n\right)^{\frac{1}{2}}+4\right)^{-1} \leqslant \operatorname{ccl}(G) \leqslant n\left(\log _{2} n-d \log _{2} \log _{2} n\right)^{-\frac{1}{2}}$. This inequality implies the statement in the title.

The bound need not to be sharp

- The Petersen graph contains a K_{5} minor
- The Petersen graph is 3 -colorable

Thank you for your attention!

I hope that was of some help.

