What is...group growth?

Or: Small, medium-sized and big groups?

Cayley graphs again

- ► For a group consider the Cayley graph
- ▶ We only want Cayley graphs for symmetric generating sets
- ► This just means we consider Cayley graphs as unoriented

Distance from the origin

• Growth of a group (for a fixed Cayley graph Γ) = growth of

f(n) = number of vertices of distance *n* from the origin in Γ

• Example Finite groups have constant growth

• Example \mathbb{Z}^k has polynomial growth

Exponential growth

• Example F_k for k > 1 has exponential growth

Question What growth rates occur? Constant, polynomial, exponential...

Question What about intermediate growth?

- $(i) \ \mbox{The whole setting is independent of the choice of Cayley graph}$
- (ii) Constant growth happens if and only if the group is finite
- (iii) Polynomial growth happens if and only if the group is virtually nilpotent
- (iv) Every finitely generated group has at most exponential growth

- ► A complete picture of which orders of growth are possible is missing
- ▶ Conjectural, there are no finitely presented groups of intermediate growth

Grigorchuk group Gr

Grigorchuk group = certain subgroup of automorphisms of a binary tree

Theorem Gr has intermediate growth $\exp(n^{0.504}) \le \operatorname{growth} \le \exp(n^{0.768})$

Thank you for your attention!

I hope that was of some help.