What are...zeta functions of languages?

Or: Counting voodoo

The most classical zeta function

Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse.

(Monatsberichte der Berliner Akademie, November 1859.)
Bei dieser Untersuchung diente mir als Ausgangspunkt die von Euler gemachte Bemerkung, dass das Product

$$
\prod \frac{1}{1-\frac{1}{p^{s}}}=\Sigma \frac{1}{n^{s}}
$$

- The Riemann zeta function plays a pivotal role in mathematics

$$
\zeta(s)=\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\ldots=\exp \left(\sum_{n=2}^{\infty} \frac{\Lambda(n)}{\log (n)} n^{-s}\right)=\prod_{\text {prime }} \frac{1}{1-p^{-s}}
$$

- Today Focus on the discrete properties of zeta-type-functions

Formal languages

	symbols	symbol name	string name
binary	01 (or ab)	bit	bitstring
Roman	abcdefghijk7mnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ	letter	word
decimal	0123456789	digit	integer
special			
keyboard	Roman + decimal + special	keystroke	typescript
genetic code	ATCG	nucleotide base	DNA
protein code	ACDEFGHIKLMNPQRSTVWY	amino acid	protein

- $A^{*}=$ free monoid on the alphabet set A
- $L \subset A^{*}$ is a (formal) language
- The elements of L are words

A zeta function

$\zeta_{L}(s)=\exp \left(\sum_{n=1}^{\infty} w_{n} \frac{s^{\frac{s}{n}}}{n}\right)$

$$
w_{n}=\text { number of words of length } n
$$

Example

- $A=\{0,1\}, L=A^{*}$ is the language of binary strings
- Words are e.g. $\emptyset, 0,1,00,01,10,11$, etc.
- $w_{n}=2^{n}$
- So we get

$$
\zeta_{L}(s)=\exp \left(\sum_{n=1}^{\infty} \frac{2^{n} s^{n}}{n}\right)
$$

- The Taylor expansion is

$$
\zeta_{L}(s)=1+2 s+4 s^{2}+8 s^{3}+\ldots
$$

Enter, the theorem

For any cyclic language L we have the Euler expansion

$\zeta_{L}(s)=\prod_{n=1}^{\infty} \frac{1}{\left(1-s^{n}\right)_{n}}$

$c_{n}=\#($ conjugacy classes of primitive words of length n in L)

- Primitive $=$ not a proper power, conjugate $u=r s$ and $v=s r$
- L is called cyclic if ($u v \in L \Leftrightarrow v u \in L$) and ($u \in L \Leftrightarrow u^{n} \in L$ for all n)
- ($u v \in L \Leftrightarrow v u \in L$) " $=$ " reading order does not matter
- $\left(u \in L \Leftrightarrow u^{n} \in L\right.$ for all $\left.n\right)$ " $=$ " root closed
- Example The language of binary strings is cyclic and

$$
\zeta_{L}(s)=\frac{1}{\left(1-s^{1}\right)^{2}} \cdot \frac{1}{\left(1-s^{2}\right)^{1}} \cdot \frac{1}{\left(1-s^{3}\right)^{2}} \cdot \frac{1}{\left(1-s^{4}\right)^{3}} \cdot \frac{1}{\left(1-s^{5}\right)^{6}} \cdot \ldots
$$

Counting on graphs

- For every graph Γ add edges in reverse orientation and get Γ^{\leftrightarrow}
- $\Gamma \leftrightarrow$ defines a cyclic language via paths
- The counting miracle $w_{n} "=" c_{n}$ applies

Thank you for your attention!

I hope that was of some help.

