What are...spectra of Cayley graphs?

Or: Eigenvalues and characters

Graphs for group

- Cayley graphs Γ associated to group presentations $G=\langle S\rangle$
- Vertices are the group elements
- Colored edges encode the action of the generators from S
- Question What properties of G are encoded in Γ ?

From groups to graphs to matrices

- Go from a graph to a matrix via the adjacency matrix
- Matrix \Rightarrow linear algebra
- Question What can linear algebra tell us about G ?

Eigenvalues

Eigenvalues: $\{2,0,0,0,-1,-1\}$

- Linear algebra says: eigenvalues are useful!
- Linear algebra is trustworthy
- So we compute eigenvalues of Cayley graphs and hope for the best

Enter, the theorem

The eigenvalues of the Cayley graphs of a finite group $G=\langle S\rangle$:

- can be indexed by the conjugacy classes of $G=\operatorname{simple} \mathbb{C}$ reps L of G
- then appear with multiplicity $\operatorname{dim} L$:

$$
\underbrace{E V_{L, 1}, \ldots, E V_{L, 1}}_{\operatorname{dim} L}, \ldots, \underbrace{E V_{L, \operatorname{dim} L}, \ldots, E V_{L, \operatorname{dim} L}}_{\operatorname{dim} L}
$$

- are given by the closed formula ($\chi_{L}=$ character of L)

$$
E V_{L, 1}+\ldots+E V_{L, \operatorname{dim} L}=\sum_{g \in S} \chi_{L}(g)
$$

Different Cayley graphs

Different graphs, different eigenvalues but same patterns

Thank you for your attention!

I hope that was of some help.

