What are...spectra of Cayley graphs?

Or: Eigenvalues and characters

Graphs for group

- ▶ Cayley graphs Γ associated to group presentations $G = \langle S \rangle$
- Vertices are the group elements
- ► Colored edges encode the action of the generators from *S*
- Question What properties of G are encoded in Γ ?

▶ Go from a graph to a matrix via the adjacency matrix

• Matrix \Rightarrow linear algebra

• Question What can linear algebra tell us about G?

Eigenvalues

Eigenvalues : $\{2, 0, 0, 0, -1, -1\}$

- Linear algebra says: eigenvalues are useful!
- Linear algebra is trustworthy
- ► So we compute eigenvalues of Cayley graphs and hope for the best

The eigenvalues of the Cayley graphs of a finite group $G = \langle S \rangle$: • can be indexed by the conjugacy classes of G = simple \mathbb{C} reps L of G• then appear with multiplicity dim L: $\underbrace{EV_{L,1}, ..., EV_{L,1}}_{\dim L}, ..., \underbrace{EV_{L,\dim L}, ..., EV_{L,\dim L}}_{\dim L}$ • are given by the closed formula $(\chi_L = \text{character of } L)$ $EV_{L,1} + ... + EV_{L,\dim L} = \sum_{g \in S} \chi_L(g)$

Different Cayley graphs

Different graphs, different eigenvalues but same patterns

Thank you for your attention!

I hope that was of some help.