Or: Darts and polynomials



Playing with polynomials
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Roots of x> — 1= (x — 1)(x* + x®* + x2 + x + 1)

» Random polynomials have random roots _

» Kronecker Maybe we can say something if we only have “small” roots?



Trying to get roots into the center

0.+0.786151§
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Roots of x> — x* = x3 +x2 — x+1

» Factoring over Z gives x> —x* —x3 +x2 —x+1=(x - 1)(x* = x2 - 1)

» The first factor is a cyclotomic polynomial, the second is not

» The first factor has roots _ the second does not



A few more attempts later

-0.813423+0.51751

0.68851 * 21284

-0.813423-0.51751i
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Rootsof x" + x5 — x> —x* —x3 —x2+1

b x’ +x%— x> — x* — x3 — x2 4+ 1 is irreducible over Z

» The roots - in the unit circle

» Maybe there are no irreducible Z polys whose roots are 'strictly in the unit circle?



Enter, the theorem

Let g € C nonzero be an algebraic integer such that all its algebraic conjugates

have absolute values

Then the abs value of g is =1
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Roots of x” — x® — x* + x3 +x2 — 1= (x + 1)(x® + x + 1)(x* — x® + 1)



Cyclotomic polynomials
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The polynomials realizing the g are the _




| hope that was of some help.



