What is...the Robinson-Schensted correspondence?

Or: Boxes and permutations

Young diagrams (YD)

- Young diagram = boxes arranged in left-justified nonincreasing rows
- Young diagrams are everywhere in combinatorics
- Careful There are three conventions: English, French and Russian

Young tableaux (YT)

1	4	5	7	8	
2	6	$\sqrt{ }$			
3					
9					

1	4	7	5	8	
2	6				
3					
9					

1	4	5	5	8
2	6			
3				
9				

- Tableaux $=$ fill boxes with numbers $\{1, \ldots, n\}$
- Standard tableaux $=$ non-repeating, numbers in rows and columns increase

A funny count

- $\left|S_{n}\right|=n!=\sum_{\mathrm{YD} \text { of } n}|\mathrm{YT}|^{2} \Rightarrow$ pairs of YT count permutations
- Task Find an explicit bijection

Enter, the theorem

There is an explicit bijection

Permutations \rightarrow pairs of $\mathrm{YT}(P, Q)$

with an explicit inverse
Permutations \leftarrow pairs of $\mathrm{YT}(P, Q)$

- The algorithm is best explained via example (next slide)

- If $\sigma \mapsto(P, Q)$, then $\sigma^{-1} \mapsto(Q, P)$
- There are many other important properties

Schensted and Viennot

1	2	5	7
3	8		

(4)

S:

1	2	4	7
3	5		

8

- Schensted's algorithm (S) bumps and records
- Viennot's algorithm (V) uses a grid

Thank you for your attention!

I hope that was of some help.

