What is...the BEST theorem?

Or: de [B]ruijn, van Aardenne-[E]hrenfest, [S]mith, [T]utte

Euler and Königsberg

- An Eulerian cycle in a graph visits every edge exactly once
- There is an easy criterion to decide whether a graph is Eulerian
- Task Count all Eulerian cycles

The directed version

- The directed version turns out to be easier
- Task (as before) Count all Eulerian cycles

Counting made easy?

- The above graph has 16 Euler cycles
- We can know that without counting them!

Enter, the (BEST) theorem

The number ec (G) of Eulerian cycles in a connected Eulerian graph G is

$$
e c(G)=t_{A} \prod_{v \in G}(\operatorname{deg} v-1)!
$$

- $t_{A}=$ number of spanning trees directed toward A Easy to compute

- $\operatorname{deg} v=$ degree of a vertex (out=in for a Eulerian graph) Easy to compute
- In our example, $t_{A}=2, \operatorname{deg} A=\operatorname{deg} B=\operatorname{deg} D=3$, $\operatorname{deg} C=\operatorname{deg} E=\operatorname{deg} F=\operatorname{deg} G=2$, so we get ec $(G)=16$

Directed versus undirected

- Counting the number of directed Eulerian cycles is easy by BEST
- Counting the number of undirected Eulerian cycles is hard \#P complete

Thank you for your attention!

I hope that was of some help.

