What is...Frucht's theorem?

Or: Graphs and symmetries

Abstract groups and realizations

- Groups formalize symmetry
- One group can have many real life incarnations
- Question Is 1d enough to realize groups?

Symmetries of graphs

- Graph automorphism = permutation of vertices keeping edge connections
- Automorphisms of a graph form a group Graph symmetry group Sym(Г)

Symmetry group is 1

- Graphs can have very different symmetry groups
- Question Given a group G, is there a graph Γ with $\operatorname{Sym}(\Gamma)=G$?

Enter, the theorem

Every finite group is the group of symmetries of a finite undirected graph

- There are some stronger forms of this theorem, e.g.
(a) One can restrict to simple graphs
(b) There are infinitely many graphs for a given group
(c) There are uncountably many infinite graphs realizing a given finite group
- There is even a version for infinite groups
- Some other facts are known, e.g. here is the number of asymmetric (not necessarily connected) graphs with n nodes (OEIS A003400)

$$
1,0,0,0,0,8,152,3696,135004,7971848,805364776,144123121972
$$

Some additional facts

- "Most" graphs have trivial automorphism group
- It is unknown whether the graph automorphism problem is P or NP-complete
- With three exceptions, one never needs more than $2|G|$ vertices

Thank you for your attention!

I hope that was of some help.

