What is...Frucht's theorem?

Or: Graphs and symmetries

Abstract groups and realizations

	Abstract	Incarnation
Numbers	3	or
Groups	$S_4 = \langle s, t, u \mid ext{some relations} angle$	or

- ► Groups formalize symmetry
- ► One group can have many real life incarnations
- Question Is 1d enough to realize groups?

Symmetries of graphs

▶ Graph automorphism = permutation of vertices keeping edge connections

• Automorphisms of a graph form a group Graph symmetry group $Sym(\Gamma)$

Here are some examples

► Graphs can have very different symmetry groups

Question Given a group G, is there a graph Γ with $Sym(\Gamma) = G$?

Every finite group is the group of symmetries of a finite undirected graph

- ► There are some stronger forms of this theorem, e.g.
 - (a) One can restrict to simple graphs
 - (b) There are infinitely many graphs for a given group
 - (c) There are uncountably many infinite graphs realizing a given finite group
- ▶ There is even a version for infinite groups
- ► Some other facts are known, e.g. here is the number of asymmetric (not necessarily connected) graphs with n nodes (OEIS A003400)

1, 0, 0, 0, 0, 8, 152, 3696, 135004, 7971848, 805364776, 144123121972

Some additional facts

- "Most" graphs have trivial automorphism group
- ► It is unknown whether the graph automorphism problem is P or NP-complete
- ▶ With three exceptions, one never needs more than 2|G| vertices

Thank you for your attention!

I hope that was of some help.