What are...prime knots?

Or: The prime numbers of knot theory!?

Shadows

- A knot is a rope with closed ends in three space
- A knot diagram is a projection of a knot (equivalence class)
- What are the elements/prime numbers of knot theory?

Connected sum \#

- The connected sum is an operation much like multiplication
- If "connected sum=multiplication", then what are the prime numbers?

This is really like multiplication!

- We have $K \#$ Unknot $=K$ See above
- We have $K \# L=L \# K$ See above
- We have $K \#(L \# M)=K \#(L \# M)$ Visualization exercise ;-)

Enter, the theorem(s)

A nontrivial knot K is called prime if $K=L \# M$ implies $L=$ Unknot or $M=$ Unknot

Theorems

- There are infinitely many prime knots; here are a few:

- Every knot can be factored $K=K_{1} \# \ldots \# K_{n}$ for prime knots K_{i}
- This factorization is unique up to permutation of factors

Primality tests? Well...

From mathworld:

In general, it is nontrivial to determine if a given knot is prime or composite (Hoste et al. 1998). However, in the case of alternating knots, Menasco (1984) showed that a reduced alternating diagram represents a prime knot iff the diagram is itself prime ("an alternating knot is prime iff it looks prime"; Hoste et al. 1998).

- Detecting primality is hard - for knots and numbers
- Sometimes this is easy, e.g. the above knot is composite Visualization exercise ;-)

Thank you for your attention!

I hope that was of some help.

