What is...Maschke's theorem?

Or: Blocks out of the blue

An action of the symmetric group S_{3}

Action Symmetry of objects via groups

A linear action of the symmetric group S_{3}

Representation Consider objects as vectors and group elements as matrices

A block decomposition

Base change matrix: $P=\left(\begin{array}{ccc}1 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & 0 & -1\end{array}\right)$

Before	$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$
After	$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & -1\end{array}\right)$
Before	$\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$	$\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$	$\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$
After	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & -1\end{array}\right)$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & 0\end{array}\right)$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0\end{array}\right)$

- We can simultaneously put all six matrices in block form
- Note that $(1,-1,0)$ and $(0,1,-1)$ are orthogonal to $(1,1,1)$
- Question In what generality does this work?

Enter, the theorem

For any action ϕ of a group G on a \mathbb{C}-vector space V we have

- \exists a basis such that all $\phi(g)$ have the same blocks One basis, same blocks
- If $V=\mathbb{C}[G]$, then $k \times k$ blocks appear k times Size $=$ number
- Example for the second point (action of S_{3} on $\mathbb{C}\left[S_{3}\right]$):

$$
\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right) \rightsquigarrow\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

The same works for the other five matrices

- The above actually works more generally if $\operatorname{char}(\mathbb{K}) \nmid|G|$ for $\mathbb{K}=\overline{\mathbb{K}}$

Careful with the ground field

$$
\begin{array}{r}
\text { Base change matrix: } P=\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & -1 & 1 \\
1 & 0 & -1
\end{array}\right) \\
\text { Inverse base change matrix: } P^{-1}=\frac{1}{3}\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & -1 & -1 \\
1 & 1 & -2
\end{array}\right)
\end{array}
$$

- The matrix P is regular in characteristic $\neq 3$
- The matrix P is singular in characteristic 3
- In characteristic 3 one, after base change, rather gets matrices of the form

$$
\left(\begin{array}{lll}
1 & * & * \\
0 & * & * \\
0 & * & *
\end{array}\right)
$$

So these do not quite have block form

Thank you for your attention!

I hope that was of some help.

