What is...Kazhdan-Lusztig combinatorics?

Or: It is nonnegative!?

The Kazhdan-Lusztig (KL) goal

- Associate a pattern to every alcove of a Coxeter complex
- The pattern is indexed by a 1 in a leading alcove
- All other alcoves have an associated polynomial in v and v^{-1}

The local KL rules

Origin to the southwest

- Up rule If we move away from the origin, then we leave a v behind
- Down rule If we move towards from the origin, then we leave a v^{-1} behind

The KL game

- Start somewhere by putting a 1 Initiation
- Inductively move using the local KL rules applied to the same color
- Whenever you hit a nonleading 1 subtract the corresponding pattern

Enter, the theorem

The KL game works and produces entries in $v \mathbb{N}[v]$ (unless leading) Surprise 1: natural numbers!
Surprise 2: no negative powers!

- The entries of the alcoves are the KL polynomials (up to conventions)
- Theorem "Any" polynomial is a KL polynomial

Natural numbers $=$ counting

$$
\begin{array}{r}
\text { Proof that }\binom{n}{k}=\frac{n!}{k!(n-k)!} \text { is a natural number: } \\
\frac{(a+b)^{1}}{(a+b)^{2}}=\frac{a}{a^{2}}+\quad \frac{b}{2}
\end{array}
$$

- Natural numbers $=$ we count something
- KL polynomials count e.g. dimensions of intersection cohomology
- In general KL polynomials count dimensions in Soergel bimodules

Thank you for your attention!

I hope that was of some help.

