What is...the Tutte polynomial?

Or: Counting using polynomials

Graphs and polynomials

- Question Find a polynomial T_{G} that encodes properties of a given graph G
- Seems a bit unmotivated but has a very (actually many) satisfying answer
- In fact, asking this question in the first place was the brilliant idea!

- A loop is an edge that connects a vertex to itself
- A bridge is an edge whose deletion increases the number of connected components
- These play a special role

Delete $G \backslash e$ and contract G / e

For a given graph G and e neither a loop nor bridge define

$$
T_{G}(x, y)=T_{G \backslash e}(x, y)+T_{G / e}(x, y)
$$

with base case $x^{m} y^{n}$ where $m=\#$ bridges, $n=\#$ loops

Enter, the theorem

Deleting-contraction is well-defined and $T_{G}(x, y)$ has many counting properties
(a) $T_{G}(2,1)$ counts the number of forest
(b) $T_{G}(1,1)$ counts the number of spanning forests
(c) $T_{G}(1,2)$ counts the number of spanning subgraphs
(d) $T_{G}(2,0)$ counts the number of acyclic orientations
(e) $T_{G}(0,2)$ counts the number of strongly connected orientations
(f) More

- There is also an explicit formula
- Isomorphic graphs have the same $T_{G}(x, y)$ but the converse is not true

$\rightsquigarrow T_{G}(x, y)=x^{5}$ and the same for all trees with 5 edges

A knot invariant

- For an alternating knot/link take a checkerboard coloring
- This defines a graph $K(G)$
- $T_{K(G)}\left(x, x^{-1}\right)$ is an invariant (the Jones polynomial of K)

Thank you for your attention!

I hope that was of some help.

