What is...sphere packing?

Or: Honeycombs in higher dimensions

Packing spheres

► Sphere packing Arrange unit spheres to fill up the most space

▶ The name ball packing might be more appropriate (ball=filled sphere)

- ► In 2D the densest packing is hexagonal Bees
- ► The packing density is about 0.91
- ► This is relatively easy to prove

- ► In 3D the densest packing is hexagonal or face-centered Cannonballs
- ► The packing density is about 0.74
- ► This is very hard to prove (keyword: Kepler's conjecture)

The optimal packing for spheres is known in...

- ► ...dimension two Bees
- ► ...dimension three Cannonballs
- ► ...some higher dimensions including 8 and 24 E8 and Leech lattice

Restricting to lattices makes life much easier:

n	1	2	3	4	5	6	7	8	24
Λ	A_1	A_2	A ₃	D_4	D_5	E_6	<i>E</i> ₇	<i>E</i> ₈	Leech
due to		Lagrange	Gauss	Korkine-		Blichfeldt			Cohn-
				Zolotareff					Kumar

However:

Folk conjecture. For high dimensions the densest packings should be non-lattice

Dimensions 8 and 24

 $\blacktriangleright~\sim$ 2016: The $\,$ E8 lattice $\,$ packing is the densest sphere packing in \mathbb{R}^8

 \blacktriangleright \sim 2016: The Leech lattice packing is the densest sphere packing in \mathbb{R}^{24}

Thank you for your attention!

I hope that was of some help.