What is...sphere packing?

Or: Honeycombs in higher dimensions

Packing spheres

- Sphere packing Arrange unit spheres to fill up the most space
- The name ball packing might be more appropriate (ball=filled sphere)

- In 2D the densest packing is hexagonal Bees
- The packing density is about 0.91
- This is relatively easy to prove

- In 3D the densest packing is hexagonal or face-centered

Cannonballs

- The packing density is about 0.74
- This is very hard to prove (keyword: Kepler's conjecture)

Enter, the theorem(s)

The optimal packing for spheres is known in...

- ...dimension two Bees
- ...dimension three Cannonballs
- ...some higher dimensions including 8 and 24 E8 and Leech lattice

Restricting to lattices makes life much easier:

n	1	2	3	4	5	6	7	8	24
\wedge	A_{1}	A_{2}	A_{3}	D_{4}	D_{5}	E_{6}	E_{7}	E_{8}	Leech
due to		Lagrange	Gauss	Korkine- Zolotareff	Blichfeldt	Cohn- Kumar			

However:

Folk conjecture. For high dimensions the densest packings should be non-lattice

Dimensions 8 and 24

- ~ 2016: The E8 lattice packing is the densest sphere packing in \mathbb{R}^{8}
- ~ 2016: The Leech lattice packing is the densest sphere packing in \mathbb{R}^{24}

Thank you for your attention!

I hope that was of some help.

