What is...a tropical curve?

Or: Straight curves

Tropical semiring

	World	Addition	Multiplication	Zero	One
Classical	\mathbb{R}	+	\times	0	1
Tropical	$\mathbb{R} \cup\{\infty\}$	$\oplus=\min$	$\otimes=+$	∞	0

- Tropical addition \oplus is taken min (or max)

$$
4 \oplus 9=4, \quad 4 \oplus \infty=4
$$

- Tropical multiplication \otimes is usual addition

$$
4 \otimes 9=13, \quad 4 \otimes 0=4
$$

- Tropical semiring $\mathbb{T}=(\mathbb{R} \cup\{\infty\}, \oplus, \otimes)$ is associative, commutative, distributive

$$
\begin{gathered}
x \otimes(y \oplus z)=(x \otimes y) \oplus(x \otimes z) \\
3 \otimes(7 \oplus 10)=10 \\
(3 \otimes 7) \oplus(3 \otimes 10)=10
\end{gathered}
$$

Tropical arithmetic

Here is a tropical addition table and a tropical multiplication table:

\oplus	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	\otimes	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{1}$	1	1	1	1	1	1	1	$\mathbf{1}$	2	3	4	5	6	7	8
$\mathbf{2}$	1	2	2	2	2	2	2	$\mathbf{2}$	3	4	5	6	7	8	9
$\mathbf{3}$	1	2	3	3	3	3	3	$\mathbf{3}$	4	5	6	7	8	9	10
$\mathbf{4}$	1	2	3	4	4	4	4	$\mathbf{4}$	5	6	7	8	9	10	11
$\mathbf{5}$	1	2	3	4	5	5	5	$\mathbf{5}$	6	7	8	9	10	11	12
$\mathbf{6}$	1	2	3	4	5	6	6	$\mathbf{6}$	7	8	9	10	11	12	13
$\mathbf{7}$	1	2	3	4	5	6	7	$\mathbf{7}$	8	9	10	11	12	13	14

- Tropical arithmetic is easy
- Idea Maybe geometry over \mathbb{T} is easier?
- Warning There is no subtraction! But you can divide by 0 ;-)

Tropical polynomials

- Tropical polynomial

$$
(x \oplus y)^{3}=(x \oplus y) \otimes(x \oplus y) \otimes(x \oplus y)=x^{3} \oplus x^{2} y \oplus x y^{2} \oplus y^{3}
$$

- Tropical Pascal's triangle

| | | | | 0 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | 0 | | 0 | | | |
| | 0 | 0 | | 0 | | 0 | | |
| 0 | | 0 | 0 | | 0 | | 0 | |
| | | | 0 | | 0 | | 0 | |

Enter, the "theorem"

The tropical vanishing set (the roots) $V(f)$ of f is

$$
V(f)=\{\min \text { among the terms of } f \text { is achieved at least twice }\}
$$ If f has two variables, $V(f)$ is called a tropical curve

- "Theorem" Any statement in classical geometry has a nicer tropical cousin
- Tropical line, conic, cubic, etc.; here with max instead of min

- Quadrics intersecting lines; here with max instead of min

Bézout's theorem

- Classical Generic projective curves $/ \mathbb{C}$ of degrees m, n intersect in $m n$ points
- Tropical Generic curves of degrees m, n intersect in mn points

Thank you for your attention!

I hope that was of some help.

