What is...a tropical curve?

Or: Straight curves

Tropical semiring

	World	Addition	Multiplication	Zero	One
Classical	\mathbb{R}	+	х	0	1
Tropical	$\mathbb{R}\cup\{\infty\}$	$\oplus = \min$	$\otimes = +$	∞	0

• Tropical addition \oplus is taken min (or max)

 $4\oplus 9=4, \quad 4\oplus \infty=4$

Tropical multiplication \otimes is usual addition

$$4\otimes 9=13, \quad 4\otimes 0=4$$

Tropical semiring $\mathbb{T} = (\mathbb{R} \cup \{\infty\}, \oplus, \otimes)$ is associative, commutative, distributive

$$egin{aligned} & x\otimes(y\oplus z)=(x\otimes y)\oplus(x\otimes z)\ & 3\otimes(7\oplus10)=10\ & (3\otimes7)\oplus(3\otimes10)=10 \end{aligned}$$

Tropical arithmetic

Here is a tropical *addition table* and a tropical *multiplication table*:

\oplus	1	2	3	4	5	6	7	8)	1	2	3	4	5	6	7
1	1	1	1	1	1	1	1	1		2	3	4	5	6	7	8
2	1	2	2	2	2	2	2	2	2	3	4	5	6	7	8	9
3	1	2	3	3	3	3	3	3	6	4	5	6	7	8	9	10
4	1	2	3	4	4	4	4	4	L	5	6	7	8	9	10	11
5	1	2	3	4	5	5	5	5	,)	6	7	8	9	10	11	12
6	1	2	3	4	5	6	6	6	;	7	8	9	10	11	12	13
7	1	2	3	4	5	6	7	7	,	8	9	10	11	12	13	14

► Tropical arithmetic is easy

► Idea Maybe geometry over T is easier?

Warning There is no subtraction! But you can divide by 0 ;-)

Tropical polynomials

Tropical polynomial

$$(x \oplus y)^3 = (x \oplus y) \otimes (x \oplus y) \otimes (x \oplus y) = x^3 \oplus x^2 y \oplus x y^2 \oplus y^3$$

Tropical Pascal's triangle

The tropical vanishing set (the roots) V(f) of f is

 $V(f) = \{ \text{min among the terms of } f \text{ is achieved at least twice} \}$

If f has two variables, V(f) is called a tropical curve

"Theorem" Any statement in classical geometry has a nicer tropical cousin

▶ Tropical line, conic, cubic, etc.; here with max instead of min

▶ Quadrics intersecting lines; here with max instead of min

Thank you for your attention!

I hope that was of some help.