What is...Bézout's theorem?

Or: Counting intersections

Degrees 1 and 1

- Line $a X+b Y=c$ Line $a^{\prime} X+b^{\prime} Y=c^{\prime}$
- Generically they intersect in one point
- Projectively there are no non-intersections

Degrees 1 and 2

- Line $a X+b Y=c$ Circle $a X^{2}+b Y^{2}=c$
- Generically they intersect in two points
- Over \mathbb{C} there are no non-intersections

Degrees 2 and 2

- Degree 2 curve $a X^{2}+b X Y+c Y^{2}=d$ Degree 2 curve $a^{\prime} X^{2}+b^{\prime} X Y+c^{\prime} Y^{2}=d^{\prime}$
- Generically they intersect in 4 points
- "Special" intersections are double intersections

Enter, the theorem

X, Y generic projective curves over \mathbb{C} of degrees $\operatorname{deg} X$ and $\operatorname{deg} Y$, then:

```
X and Y intersect (with multiplicities) deg X deg Y times
```

- Over \mathbb{R} one gets \leq instead of $=$
- There is a version over any field, and also a higher dimensional version
- Two circles intersect 4 times, which uses \mathbb{C} and ∞, namely ($1: \pm i: 0$)

Multiplicities

Bézout's theorem for a circle and an ellipse depends on the multiplicities

Thank you for your attention!

I hope that was of some help.

