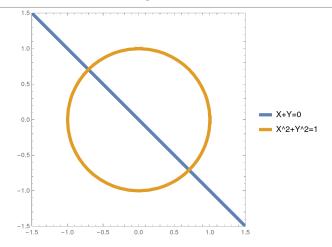
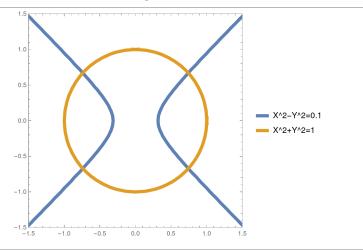

What is...Bézout's theorem?


Or: Counting intersections

Degrees 1 and 1

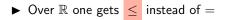
• Line aX + bY = c Line a'X + b'Y = c'


- ► Generically they intersect in one point
- ▶ Projectively there are no non-intersections

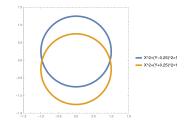
• Line aX + bY = c Circle $aX^2 + bY^2 = c$

- ► Generically they intersect in two points
- \blacktriangleright Over $\mathbb C$ there are **no** non-intersections

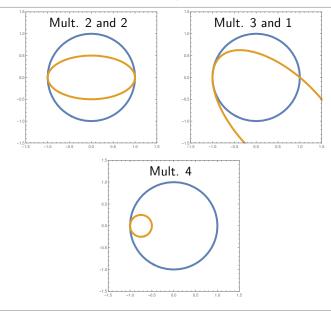
Degrees 2 and 2



Degree 2 curve $aX^2+bXY+cY^2=d$ Degree 2 curve $a'X^2+b'XY+c'Y^2=d'$


- ▶ Generically they intersect in 4 points
- "Special" intersections are double intersections

X, Y generic projective curves over $\mathbb C$ of degrees deg X and deg Y, then:


X and Y intersect (with multiplicities) $\deg X \deg Y$ times

- ▶ There is a version over any field, and also a higher dimensional version
- ▶ Two circles intersect 4 times, which uses \mathbb{C} and ∞ , namely $(1 : \pm i : 0)$

Multiplicities

Bézout's theorem for a circle and an ellipse depends on the multiplicities

Thank you for your attention!

I hope that was of some help.