What is...the Gauss-Wantzel theorem?

Or: Why 65537?

The rules of the game

- ► Create lines using two existing points
 - Create circles using two existing points
- Create points using intersections

The triangle

► The construction of the triangle is easy and known for millennia

Question What regular polygons can be constructed?

- ► The construction of the square is just a bit harder and known for millennia
- ► Ok, this problem is easy right?

The regular ngon is constructible if and only if

$$n=2^kp_1\dots p_t$$

- Here p_i are distinct Fermat primes $p_i = 2^{2^j} + 1$
- ▶ The only known Fermat primes up to date are 3,5,17,257,65537
- ► The 66537gon is possibly the biggest constructible elementary polygon
- ▶ So, almost no regular ngon is constructible

Ueber die Teilung des Kreises in 65537 gleiche Teile.

Von

J. Hermes in Lingen.

(Vorgelegt von F. Klein in der Sitzung am 5. Mai 1894.)

1) Bekanntlich erfordert die Gleichung:

$$r^{p}-1 = 0$$
 für $p = 2^{2^{\mu}}+1$

- ► The Gauss–Wantzel theorem is non-explicit
- ► The first explicit construction of the...
 - (a) ... regular 3 and 5gons are ancient
 - (b) ...regular 17gon is from 1796
 - (c) ...regular 257gon is from 1822
 - (d) ...regular 65537gon is from 1894 (after decades of work)

Thank you for your attention!

I hope that was of some help.