What are...hyperbolic groups?

Or: From groups to Cantor sets

Cayley graph

- Every group G generated by S has an associated Cayley graph Γ
- Vertices of $\Gamma=$ elements of G, edges of $\Gamma=$ actions of S
- Path-distance defines a metric d on Γ by $d($ neighbors in $\Gamma)=1$

Thin triangles

- The Cayley graph Γ of the free group F_{2} with $S=\{a, b\}$ is a tree as above
- Geodesic triangles (x, y, z) in Γ are thin

$$
\exists \delta \geq 0: \forall w \in[x, y] \text { we have } d(w,[x, z] \cup[y, z]) \leq \delta
$$

Thick triangles

- The Cayley graph Γ of $\mathbb{Z}^{2}, S=\{(1,0),(0,1)\}$ is a grid as above
- Geodesic triangles (x, y, z) in Γ are not thin:

$$
\nexists \delta \geq 0: \forall w \in[x, y] \text { we have } d(w,[x, z] \cup[y, z]) \leq \delta
$$

Enter, the definition/theorem

A finitely presented group G is hyperbolic if all geodesic triangles (x, y, z) in Γ are thin

$$
(*) \exists \delta \geq 0: \forall w \in[x, y] \text { we have } d(w,[x, z] \cup[y, z]) \leq \delta
$$

Hyperbolic group

Hyperbolic space

- $\left({ }^{*}\right)$ is called the Rips condition, which is equivalent to triangles being thin
- This does not depend on Γ Intrinsic to G
- Theorem Almost all groups are hyperbolic (very probably random groups are hyperbolic)

Boundaries!

- The points at infinity, the boundary, of Γ forms a compact metrizable space
- Theorem The boundary of most hyperbolic groups are Cantor sets/Menger sponges

Thank you for your attention!

I hope that was of some help.

