What are...hyperbolic groups?

Or: From groups to Cantor sets

Cayley graph

- Every group G generated by S has an associated Cayley graph Γ
- ▶ Vertices of Γ = elements of *G*, edges of Γ = actions of *S*

▶ Path-distance defines a metric *d* on Γ by *d*(neighbors in Γ) = 1

Thin triangles

- ▶ The Cayley graph Γ of the free group F_2 with $S = \{a, b\}$ is a tree as above
- Geodesic triangles (x, y, z) in Γ are thin :

 $\exists \delta \geq 0 : \forall w \in [x, y]$ we have $d(w, [x, z] \cup [y, z]) \leq \delta$

Thick triangles

▶ The Cayley graph Γ of $\mathbb{Z}^2, S = \{(1,0), (0,1)\}$ is a grid as above

• Geodesic triangles (x, y, z) in Γ are not thin:

 $\exists \delta \geq 0 : \forall w \in [x, y] \text{ we have } d(w, [x, z] \cup [y, z]) \leq \delta$

A finitely presented group G is hyperbolic if all geodesic triangles (x, y, z) in Γ are thin

(*) $\exists \delta \geq 0 : \forall w \in [x, y]$ we have $d(w, [x, z] \cup [y, z]) \leq \delta$

 \blacktriangleright (*) is called the Rips condition, which is equivalent to triangles being thin

• This does not depend on Γ Intrinsic to G

Theorem Almost all groups are hyperbolic (very probably random groups are hyperbolic)

Boundaries!

- \blacktriangleright The points at infinity, the boundary , of Γ forms a compact metrizable space
 - Theorem The boundary of most hyperbolic groups are Cantor sets/Menger sponges

Thank you for your attention!

I hope that was of some help.