## What are...the three geometries?

Or: 0, 1 and  $\infty$ 

Euclidean geometry (EG)

## Angles in a Triangle

 $m \angle CAB = 141.283^{\circ} | m \angle ABC = 13.078^{\circ} | m \angle BCA = 25.639^{\circ}$  $m \angle CAB + m \angle ABC + m \angle BCA = 180.00^{\circ}$ 



► EG is ancient More than 2000 years

- ► In EG all triangles have angles adding to 180° Normal triangles
- ▶ In EG there is exactly one parallel line

## Spherical geometry (SG)



- ► SG is old, but not ancient 19th century
- ► In SG all triangles have angles adding to more than 180° Fat triangles
- ► In EG there are no parallel lines

Hyperbolic geometry (HG)



- ► HG is old, but not ancient 19th century
- ► In HG all triangles have angles adding to less than 180° Thin triangles
- $\blacktriangleright$  In HG there are  $~\infty~$  many parallel lines

There are only three geometries on surfaces, axiomatically given by:

- Line segments exists
- Infinite lines exist
- Circles exists
- ► All right angles are congruent
- ► A version of the parallel postulate
  - EG Through a point not on a given line L, there is one line not meeting L
  - SG Through a point not on a given line L, there is no line not meeting L
  - HG Through a point not on a given line L, there are  $\infty$  many lines not meeting L



## The shape of space



- ▶ It is not easy to determine the geometry we are living in
- $\blacktriangleright$  The curvature of the universe is  $\approx$  1±0.1  $\,$  1=EG, >1=SG, <1=HG

Thank you for your attention!

I hope that was of some help.