What are...the three geometries?

$$
\text { Or: } 0,1 \text { and } \infty
$$

Angles in a Triangle

$$
\begin{gathered}
\mathrm{m} \angle C A B=141.283^{\circ}\left|\mathrm{m} \angle A B C=13.078^{\circ}\right| \mathrm{m} \angle B C A=25.639^{\circ} \\
\mathrm{m} \angle C A B+\mathrm{m} \angle A B C+\mathrm{m} \angle B C A=180.00^{\circ}
\end{gathered}
$$

- EG is ancient More than 2000 years
- In EG all triangles have angles adding to 180° Normal triangles
- In EG there is exactly one parallel line

Spherical geometry (SG)

- SG is old, but not ancient 19th century
- In SG all triangles have angles adding to more than 180°

Fat triangles

- In EG there are no parallel lines

Hyperbolic geometry (HG)

- HG is old, but not ancient 19th century
- In HG all triangles have angles adding to less than 180° Thin triangles
- In HG there are ∞ many parallel lines

Enter, the theorem

There are only three geometries on surfaces, axiomatically given by:

- Line segments exists
- Infinite lines exist
- Circles exists
- All right angles are congruent
- A version of the parallel postulate
- EG Through a point not on a given line L, there is one line not meeting L
- SG Through a point not on a given line L, there is no line not meeting L
- HG Through a point not on a given line L, there are ∞ many lines not meeting L

EG

The shape of space

- It is not easy to determine the geometry we are living in
- The curvature of the universe is $\approx 1 \pm 0.1 \quad 1=\mathrm{EG},>1=\mathrm{SG},<1=\mathrm{HG}$

Thank you for your attention!

I hope that was of some help.

