What is...the philosophy of generating functions?

Or: How to encode counting problems

Natural numbers as coefficients

$$
\begin{gathered}
g_{1}(z)=\frac{1}{1-z}=1 z^{0}+1 z^{1}+1 z^{2}+1 z^{3}+1 z^{4}+1 z^{5}+\ldots \\
g_{2}(z)=\frac{1}{1-z^{2}}=1 z^{0}+0 z^{1}+1 z^{2}+0 z^{3}+1 z^{4}+0 z^{5}+\ldots \\
g_{3}(z)=\frac{1-z^{2}}{1-z}=1 z^{0}+1 z^{1}+0 z^{2}+0 z^{3}+0 z^{4}+0 z^{5}+\ldots \\
g_{4}(z)=\frac{1}{1-z} \frac{1}{1-z}=1 z^{0}+2 z^{1}+3 z^{2}+4 z^{3}+5 z^{4}+6 z^{5}+\ldots
\end{gathered}
$$

We are counting something!

Ways to select balls?

No balls: $\emptyset \rightsquigarrow 1$
One ball: or $\rightsquigarrow 2$
Two balls: or or or $\rightsquigarrow 3$
Three balls: \bigcirc or \bigcirc or \bigcirc

The number of ways to select k balls is the coefficient of z^{k} in $g_{4}(z)=\frac{1}{1-z} \frac{1}{1-z}$. So $g_{4}(z)$ generates the number of ways to select balls out of two colors

More ball counting

$$
\begin{gathered}
g_{1}(z)=\frac{1}{1-z} \rightsquigarrow \emptyset, \bigcirc, \bigcirc, \ldots \\
g_{2}(z)=\frac{1}{1-z^{2}} \rightsquigarrow \emptyset, \times, \times, \ldots \\
g_{3}(z)=\frac{1-z^{2}}{1-z} \rightsquigarrow \emptyset, \bigcirc, \times, \times, \ldots \\
g_{4}(z)=\frac{1}{1-z} \frac{1}{1-z} \rightsquigarrow \emptyset, \bigcirc \text { or }, \bigcirc \text { or } \bigcirc, \ldots
\end{gathered}
$$

- $g_{1}(z)$ encodes the number of ways to select k balls from one color
- $g_{2}(z)$ encodes the number of ways to select $2 k$ balls from one color
- $g_{3}(z)$ encodes the number of ways to select at most one ball from one color
- $g_{4}(z)$ encodes the number of ways to select k balls from two colors

The functions $g_{i}(z)$ are an efficient way to encode these counting problems

Enter, the theorem/philosophy!

A generating function is a way of encoding an infinite sequence of numbers by treating them as the coefficients of a formal power series.

A generating function is a device somewhat similar to a bag.
Instead of carrying many little objects detachedly, which could be embarrassing, we put them all in a bag, and then we have only one object to carry, the bag

(Pólya)

The rabbit counting a.k.a. Fibonacci numbers:

$$
g(z)=\frac{1}{1-z-z^{2}}=1 z^{0}+1 z^{1}+2 z^{2}+3 z^{3}+5 z^{4}+8 z^{5}+13 z^{6}+\ldots
$$

More balls

The number of ways to select 100 balls colored red, blue, yellow and green is the coefficient of $z 100$ in

$$
g(z)=\frac{1}{1-z} \cdot \frac{1}{1-z} \cdot \frac{1}{1-z} \cdot \frac{1}{1-z}
$$

Thank you for your attention!

I hope that was of some help.

