What are...Chaitin's constants?

Or: Computing a glimpse of randomness

Halting problems (HP)

I AVOID DRINKING FOUNTAINS OUTSIDE BATHROOMS BECAUSE I'M AFRAID OF GETTING TRAPPED IN A LOOP.

Problem For a given program can one decide whether it halts or not?

Pseudocode examples

does halt: print "Hello, world!" does not halt: while (true) continue

• Warning There is no general algorithm to do this

Solving "all" mathematical problems

fation, might hopkofon , al mine about for mal forwardings ? , me singlet ferres lauter mumares unico modo in due operation withiles gut y suif filly a sign will of any nine conjecture hazadiom : Saf jato zaft welfe sit zuran numeris primi Anumgufitzat if an aggregation of vialow numerorung orver gling all when will for in white and see younglow +={:+:+2 5:+++3 +=2:++2 5:+++3 ++++++ Binned folgen vin gave offervationes of demonstrivent win Si v. sit functio ipsias x. cius mode at facta V = c. numbro an congres, determinari perfit & por c. et reliques constances in funch an determinari val

• Goldbach's conjecture Every $n \ge 4$ is the sum of two primes

Goldbach's program Write a program P that searches for counterexamples

Goldbach's HP : P halts \Rightarrow GC false P does not halt \Rightarrow GC true

Many problems can be solved in the same way

Imagine the following

- \blacktriangleright Chaitin's omega Ω encodes whether programs will halt
- Knowing enough digits of Ω , one could calculate the HP for all programs
- ► Thus, all of mathematics turns into a digit hunt!?

p is a program expressed in binary form, U universal Turing/Chaitin machine (UTM)

$$\Omega_U = \sum_{p \text{ halts}} 2^{-|p|}$$

Then $\Omega_U \in [0, 1]$, the halting probability

- $\blacktriangleright \ \Omega_U \iff$ probability that a random program will halt
- ► Note that Ω_U depends on U
- ► Turing machine (TM) A mathematical model of computation

UTM A TM that simulates an arbitrary TM on arbitrary input

Computing randomness

Knowing enough digits of Ω_U would "solve all problems", however:

- ► ZFC (if sound) can determine the value of only finitely many bits of Ω_U
- Algorithmically random To get *n* digits one needs a program of length $\approx n$

Not computable No computable function enumerates Ω_U binary expansion

Thank you for your attention!

I hope that was of some help.