What is...a coherence theorem?

Or: Don't underestimate associativity

Wait, this is not trivial!

$$
(3 \times 4) \times 2
$$

$$
3 \times(4 \times 2)
$$

- Associativity $h \cdot(g \cdot f)=(h \cdot g) \cdot f$
- Problem This is not trivial, e.g. $(4 / 2) / 2=1 \neq 4=4 /(2 / 2)$
- Even worse Why should this imply e.g. $(i \cdot(h \cdot g)) \cdot f=(i \cdot h) \cdot(g \cdot f)$?

A "wrong" and a "correct" definition

- (A) $h \cdot(g \cdot f)=(h \cdot g) \cdot f$
- (B) Same result regardless of how valid pairs of parentheses are inserted
- "Philosophically correct" Use (B) as the definition and show that $(A) \Leftrightarrow(B)$

A proof that $(A) \Leftrightarrow(B)$

- Vertices of K_{n} All possible parenthesis of n symbols
- Edges of K_{n} If there is a basic move connecting them
- To show K_{n} is connected

Enter, the theorem

A coherence theorem is a theorem of the form
Finite collection of conditions \Leftrightarrow All conditions

Examples

- Associativity $h \cdot(g \cdot f)=(h \cdot g) \cdot f \Leftrightarrow$ All bracketings

\Leftrightarrow General pants move
- Times 1 cancels $1 \cdot f=f=f \cdot 1 \Leftrightarrow$ All 1 cancels

- Mac Lane's famed coherence theorem for monoidal categories

Coherence theorem for monoidal categories - a higher dimensional version

- Involves three pentagon, square and triangle (for the unit)
- Proof Show that K_{n} has $\pi_{1}\left(K_{n}\right)$ trivial (for asso it was $\pi_{0}\left(K_{n}\right)$ trivial)

Thank you for your attention!

I hope that was of some help.

