What is...Diffie-Hellman key exchange?

Or: How not to transfer the encryption key

The problems in end-to-end encryption (E2EE)

- E2EE Only the two communicating parties should decrypt the message
- Problem How to transfer the encryption key?
- Diffie–Hellman (DH) Addresses this problem

Asymmetry rocks!

- Symmetric Both parties us the same secret key
- Problem (still) How to transfer the encryption key?

Asymmetric Both parties have a public and a private key, no sharing needed

DH in action

- ▶ DH Two secrets *a*, *b*, public *g*, send mix *ag* or *gb* and get *agb*
- Catch Relies on the mixtures to be hard ot decompose
- BTW Using colors is not very practical ;-)

The original DH key exchange:

- ▶ Fix $\mathbb{Z}/p\mathbb{Z}$ and $g \in (\mathbb{Z}/p\mathbb{Z})^*$ Public
- ▶ Party A fixes $a \in \mathbb{Z}$, party B fixes $b \in \mathbb{Z}$ Private
- ▶ Party A sends $g^a \mod p$, party B sends $g^b \mod p$ Public
- Party A computes (g^b mod p)^a mod p, party B computes (g^a mod p)^b mod p
 A does not know b and B does not know a

Common secret $(g^b \mod p)^a \mod p = g^{ab} \mod p = (g^a \mod p)^b \mod p$

Theorem/idea

Party C knows only p, g, $g^a \mod p$ and $g^b \mod p$, and needs to find $g^{ab} \mod p$ Finding $g^{ab} \mod p$ is the discrete logarithm problem which does not appear to have an efficient algorithm (but there are efficient quantum algorithms)

Variation of DH: conjugacy search problem (CSP)

- Group-bases $g^x = xgx^{-1}$ for x in some group G
- Same game, different names $g \in G$ public, $a, b \in G$ private

Any group G works, but the conjugacy problem should be hard in G

Proposed candidates include braid groups (albeit these are not optimal)

Thank you for your attention!

I hope that was of some help.