## What is...Diffie-Hellman key exchange?

Or: How not to transfer the encryption key

The problems in end-to-end encryption (E2EE)


- E2EE Only the two communicating parties should decrypt the message
- Problem How to transfer the encryption key?
- Diffie-Hellman (DH) Addresses this problem


## Asymmetry rocks!

## Symmetric encryption



## Asymmetric encryption



- Symmetric Both parties us the same secret key
- Problem (still) How to transfer the encryption key?
- Asymmetric Both parties have a public and a private key, no sharing needed


## DH in action



- DH Two secrets $a, b$, public $g$, send mix $a g$ or $g b$ and get $a g b$
- Catch Relies on the mixtures to be hard ot decompose
- BTW Using colors is not very practical ;-)


## Enter, the theorem/idea

The original DH key exchange:

- Fix $\mathbb{Z} / p \mathbb{Z}$ and $g \in(\mathbb{Z} / p \mathbb{Z})^{*}$ Public
- Party A fixes $a \in \mathbb{Z}$, party $B$ fixes $b \in \mathbb{Z}$ Private
- Party A sends $g^{a} \bmod p$, party B sends $g^{b} \bmod p$ Public
- Party A computes $\left(g^{b} \bmod p\right)^{a} \bmod p$, party B computes $\left(g^{a} \bmod p\right)^{b} \bmod p$

A does not know $b$ and $B$ does not know $a$

- Common secret $\left(g^{b} \bmod p\right)^{a} \bmod p=g^{a b} \bmod p=\left(g^{a} \bmod p\right)^{b} \bmod p$


## Theorem/idea

Party $C$ knows only $p, g, g^{a} \bmod p$ and $g^{b} \bmod p$, and needs to find $g^{a b} \bmod p$ Finding $g^{a b} \bmod p$ is the discrete logarithm problem which does not appear to have an efficient algorithm (but there are efficient quantum algorithms)

Variation of DH: conjugacy search problem (CSP)


- Group-bases $g^{x}=x g x^{-1}$ for $x$ in some group $G$
- Same game, different names $g \in G$ public, $a, b \in G$ private
- Any group $G$ works, but the conjugacy problem should be hard in $G$
- Proposed candidates include braid groups (albeit these are not optimal)

Thank you for your attention!

I hope that was of some help.

