What are...Ramsey numbers?

Or: Counting made difficult

Complete graphs K_{n} and counting

$$
K_{1}
$$

K_{2}

- $K_{n}=$ graph with n vertices, every pair of vertices is connected by an edge
- No double edges or loops
- K_{n} is at the heart of many counting problems

Color K_{n} blue-red

How big must X be to guarantee that Y holds?

- $R(b, r)$ What is the smallest n such that K_{n} contains a blue K_{b} or a red K_{r} for all blue-red colorings of its edges?
- The above says $R(3,3)>5$ and actually $R(3,3)=6$

Enter, the theorem

The number $R(b, r)=R(r, b)$ is finite :

$$
R(b, r) \leq\binom{ b+r-2}{b-1}
$$

The same works for any finite number of colors: $R\left(c_{1}, \ldots, c_{n}\right)<\infty$

- The numbers are only known (in 2021) for very few values:

$b \backslash r$	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	1	1
2		2	3	4	5	6	7	8	9	10
3			6	9	14	18	23	28	36	$40-42$
4				10	25	$36-41$	$49-61$	$59-84$	$73-115$	$92-149$
5					$43-48$	$58-87$	$80-143$	$101-216$	$133-316$	$204-1171$
6						$102-165$	$115-298$	$134-495$	$183-780$	$204-1171$
7							$205-540$	$219-1031$	$252-1713$	$292-2826$
8								$282-1870$	$329-3583$	$343-6090$
9									$565-6588$	$581-12677$
10										$798-23556$

- Computing $R(6,6)$ is probably hopeless

A hopeless counting problem

It is easy to see that $R(3,3,3) \leq 17$, it is hard to see that $R(3,3,3)=17$:

- Use $R(3,3)=5$ to see $R(3,3,3) \leq 17$
- K_{16} has $3^{120} \approx 10^{57}$ blue-red-green colorings
- Only 2 have no monochromatic triangle (up to symmetry)

Thank you for your attention!

I hope that was of some help.

