What are...Ramsey numbers?

Or: Counting made difficult

## Complete graphs $K_n$ and counting



- $K_n$  = graph with *n* vertices, every pair of vertices is connected by an edge
- ► No double edges or loops
- $K_n$  is at the heart of many counting problems

## Color $K_n$ blue-red



•  $K_n$  has n(n-1)/2 edges

• There are thus  $2^{n(n-1)/2}$  blue-red colorings of the edges

How big must X be to guarantee that Y holds?



R(b, r) What is the smallest n such that K<sub>n</sub> contains a blue K<sub>b</sub> or a red K<sub>r</sub> for all blue-red colorings of its edges?

• The above says R(3,3) > 5 and actually R(3,3) = 6

## Enter, the theorem

The number 
$$R(b,r) = R(r,b)$$
 is finite : $R(b,r) \le inom{b+r-2}{b-1}$ 

The same works for any finite number of colors:  $R(c_1,...,c_n) < \infty$ 

► The numbers are only known (in 2021) for very few values:

| b∖r | 1 | 2 | 3 | 4  | 5     | 6       | 7       | 8        | 9        | 10        |
|-----|---|---|---|----|-------|---------|---------|----------|----------|-----------|
| 1   | 1 | 1 | 1 | 1  | 1     | 1       | 1       | 1        | 1        | 1         |
| 2   |   | 2 | 3 | 4  | 5     | 6       | 7       | 8        | 9        | 10        |
| 3   |   |   | 6 | 9  | 14    | 18      | 23      | 28       | 36       | 40-42     |
| 4   |   |   |   | 10 | 25    | 36-41   | 49-61   | 59-84    | 73-115   | 92-149    |
| 5   |   |   |   |    | 43-48 | 58-87   | 80-143  | 101-216  | 133-316  | 204-1171  |
| 6   |   |   |   |    |       | 102-165 | 115-298 | 134-495  | 183-780  | 204-1171  |
| 7   |   |   |   |    |       |         | 205-540 | 219-1031 | 252-1713 | 292-2826  |
| 8   |   |   |   |    |       |         |         | 282-1870 | 329-3583 | 343-6090  |
| 9   |   |   |   |    |       |         |         |          | 565-6588 | 581-12677 |
| 10  |   |   |   |    |       |         |         |          |          | 798-23556 |

• Computing R(6, 6) is probably hopeless

## A hopeless counting problem



It is easy to see that  $R(3,3,3) \le 17$ , it is hard to see that R(3,3,3) = 17:

- Use R(3,3) = 5 to see  $R(3,3,3) \le 17$
- $K_{16}$  has  $3^{120} \approx 10^{57}$  blue-red-green colorings
- Only 2 have no monochromatic triangle (up to symmetry)

Thank you for your attention!

I hope that was of some help.