What is...the Gessel-Viennot lemma?

Or: Determinants are graphs?!

The starting point: a classic!

$$
\operatorname{det}(M)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) m_{1, \sigma_{1}} \cdot \ldots \cdot m_{n, \sigma_{n}}
$$

3x3 Example

$$
M=\left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right)
$$

$=m_{11} m_{22} m_{33}-m_{12} m_{21} m_{33}-m_{11} m_{23} m_{32}+m_{12} m_{23} m_{31}+m_{13} m_{21} m_{32}-m_{13} m_{22} m_{31}$

Reinterpretation via graphs

- Matrix M weighted directed bipartite graph
- $\operatorname{det}(M) \leadsto$ weighted (signed) sum over vertex-disjoint path systems (vdps)

Determinants and paths

- A vdps P_{σ}, e.g. $P_{\sigma}=\left\{1 \rightarrow 2^{\prime}, 2 \rightarrow 1^{\prime}, 3 \rightarrow 3^{\prime}\right\}$
- Weights $w\left(P_{\sigma}\right)$, e.g. $w\left(P_{\sigma}\right)=m_{12} m_{21} m_{33}$
- Reinterpretation $\operatorname{det}(M)=\sum_{v d p s} \operatorname{sgn}(P) w(P)$

Enter, the theorem/lemma

Given a finite weighted acyclic-directed graph, A and B two n-sets of vertices, and M the path matrix from A to B. Then:

$$
\operatorname{det}(M)=\sum_{v d p s} \operatorname{sgn}(P) w(P)
$$

- This generalizes the determinant formula to a huge class of graphs
- Example $A=$ green, $B=$ red, and

Turn matrices into graphs

Cauchy-Binet P an $r \times s$ matrix, Q an $s \times r$ matrix, $r \leq s$, then

$$
\operatorname{det}(P Q)=\sum_{Z} \operatorname{det}\left(P_{Z}\right) \operatorname{det}\left(Q_{Z}\right)
$$

where $P_{Z}, Q_{Z}=r \times r$ with column-set Z respectively row-set Z
Proof? The picture above

Thank you for your attention!

I hope that was of some help.

