What is...elliptic addition?

Or: Torus games

► Elliptic curve The solutions of $y^2 = x^3 + ax + b$ and a "point at infinity" O

 \blacktriangleright With a bit more care, these can be defined over $% \mathbb{C}^{2}$ any field \mathbb{K}

Elliptic addition

▶ In particular, they give rise to an abelian group $E(\mathbb{K})$

Elliptic addition modulo a prime

- ► The set of points $E(\mathbb{F}_q)$ is a finite abelian group (q is some prime power)
- Example $y^2 = x^3 x$ gives $E(\mathbb{F}_{71}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/36\mathbb{Z}$

Every elliptic curve *E* gives rise to an abelian group by: The identity is $O \propto = 0$

- ▶ If P, Q, R are points of line $\cap E$, then A + B + C = 0 1
- ▶ If line \cap *E* consists of *P* and *Q*, is tangent to *E* at *Q*, then *P* + *Q* + *Q* = 0 2
- ▶ If line \cap *E* consists consists of *P* and *Q* and *O*, then *P* + *Q* + 0 = 0 3
- ▶ If line \cap *E* consists of *P*, is tangent to *E* at *P*, then *P* + *P* + 0 = 0 4

Elliptic curves are in geometry and number theory, but in cryptography?

An elliptic curve cryptosystem (for fixed E over \mathbb{F}_p) can be defined by: A public point $P \in E$; a private key $k \in \mathbb{N}$; a public key is P + ... + P k-times

Breaking a 228bit RSA \equiv less energy to than it takes to boil a teaspoon of water Breaking a 228bit elliptic curve \equiv energy to boil all the water on earth Thank you for your attention!

I hope that was of some help.