What is...elliptic addition?

Or: Torus games

Zeros of cubic curves

- Elliptic curve The solutions of $y^{2}=x^{3}+a x+b$ and a "point at infinity" O
- With a bit more care, these can be defined over any field \mathbb{K}

Elliptic addition

- Elliptic curves are abelian varieties Addition and geometry
- In particular, they give rise to an abelian group $E(\mathbb{K})$

Elliptic addition modulo a prime

- The set of points $E\left(\mathbb{F}_{q}\right)$ is a finite abelian group (q is some prime power)
- Example $y^{2}=x^{3}-x$ gives $E\left(\mathbb{F}_{71}\right) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 36 \mathbb{Z}$

Enter, the theorem

Every elliptic curve E gives rise to an abelian group by:

- The identity is $O \infty=0$
- If P, Q, R are points of line $\cap E$, then $A+B+C=0 \quad 1$
- If line $\cap E$ consists of P and Q, is tangent to E at Q, then $P+Q+Q=02$
- If line $\cap E$ consists consists of P and Q and O, then $P+Q+0=03$
- If line $\cap E$ consists of P, is tangent to E at P, then $P+P+0=0 \quad 4$

$P+Q+R=0$

$P+Q+Q=0$

$P+Q+0=0$

$P+P+0=0$

Elliptic curves are in geometry and number theory, but in cryptography?

An elliptic curve cryptosystem (for fixed E over \mathbb{F}_{p}) can be defined by: A public point $P \in E$; a private key $k \in \mathbb{N}$; a public key is $P+\ldots+P k$-times

Breaking a 228bit RSA \equiv less energy to than it takes to boil a teaspoon of water
Breaking a 228bit elliptic curve \equiv energy to boil all the water on earth

Thank you for your attention!

I hope that was of some help.

