```
What is...the fifteen theorem?
```

Or: What is special about $1,2,3,5,6,7,10,14,15$?

Fermat's two squares

13

 $9=3^{2}$
 $$
=\square+\square+\square=\square+\square=2^{9=3^{2}}+\square \square \square
$$

- (An odd prime p can be written as $\left.p=a^{2}+b^{2}\right) \Leftrightarrow(4$ divides $p-1)$
- We miss numbers!
(Formerly M0968 N0361)
$0,1,2,4,5,8,9,10,13,16,17,18,20,25,26,29,32,34,36,37,40,41,45,49,50,52$, $53,58,61,64,65,68,72,73,74,80,81,82,85,89,90,97,98,100,101,104,106,109,113$, $116,117,121,122,125,128,130,136,137,144,145,146,148,149,153,157,160$ (list; graph; refs; listen; history; text; internal format)

Legendre's three-squares

- $\left(n\right.$ can be written as $\left.n=a^{2}+b^{2}+c^{2}\right) \Leftrightarrow n \neq 4^{x}(8 y+7)$
- We miss numbers!

A004215 Numbers that are the sum of 4 but no fewer nonzero squares.
(Formerly M4349)
$7,15,23,28,31,39,47,55,60,63,71,79,87,92,95,103,111,112,119,124,127,135,143$, $151,156,159,167,175,183,188,191,199,207,215,220,223,231,239,240,247,252,255$, 263, 271, 279, 284, 287, 295, 303, 311, 316, 319, 327, 335, 343 (list; graph; refs; listen; history; text;

Lagrange's four-squares

- n can always be written as $n=a^{2}+b^{2}+c^{2}+d^{2}$
- We get all numbers!
A000118 Number of ways of writing n as a sum of 4 squares; also theta series of lattice $Z \wedge 4$.
$1,8,24,32,24,48,96,64,24,104,144,96,96,112,192,192,24,144,312,160,144$, $256,288,192,96,248,336,320,192,240,576,256,24,384,432,384,312,304,480$, $448,144,336,768,352,288,624,576,384,96,456,744,576,336,432,960,576,192$ list;

Enter, the theorem

Let A be a positive-definite quadratic form defined by an integral matrix
A is universal (it takes all values in \mathbb{N})
\Leftrightarrow
A takes the values $1,2,3,5,6,7,10,14,15$

Lagrange's four squares
Another universal form

What if the off-diagonals are not divisible by 2 ?

Let A be a positive-definite integral quadratic form
A is universal (it takes all values in \mathbb{N})

\Leftrightarrow

A takes the values $1,2,3,5,6,7,10,13,14,15,17,19,21,22$

$$
23,26,29,30,31,34,35,37,42,58,93,110,145,203,290
$$

- The above also takes forms such as $x^{2}+x y+y^{2}$ into account

$$
x^{2}+x y+y^{2} \text { an }\left(\begin{array}{cc}
1 & 1 / 2 \\
1 / 2 & 1
\end{array}\right)
$$

- There are 54 universal four-variable diagonal quadratic forms
- There are 6436 universal four-variable quadratic forms

Thank you for your attention!

I hope that was of some help.

