What is...roundness?

Or: My circle has corners!

A good definition?

- A circle is a 2d shape of constant width Sure!
- A two-dimensional shape of constant width is a circle Ah, sure?

Beware Common engineering problems

- A 2d shape of constant width is rarely a circle
- The Australia 50cent coin is of constant width but definitely not a circle

How bad can it get? Pretty bad...

A Reuleaux triangle

A smooth example

- Even "A smooth 2d shape of constant width is a circle" is not true
- My favorite construction: Use polynomial equations to find these, e.g.

$$
\begin{aligned}
& f(x, y)=0 \text { with } f(x, y)=\left(x^{2}+y^{2}\right)^{4}-45\left(x^{2}+y^{2}\right)^{3}-41283\left(x^{2}+y^{2}\right)^{2} \\
& \quad+7950960\left(x^{2}+y^{2}\right)+16\left(x^{2}-3 y^{2}\right)^{3}+48\left(x^{2}+y^{2}\right)\left(x^{2}-3 y^{2}\right)^{2} \\
& \quad+x\left(x^{2}-3 y^{2}\right)\left(16\left(x^{2}+y^{2}\right)^{2}-5544\left(x^{2}+y^{2}\right)+266382\right)-720^{3}
\end{aligned}
$$

Enter, the theorem

Constant width can be defined verbatim in any dimension

- There exist objects of constant width in any dimension

- Almost all (in a precise sense) are smooth
- Some are smooth and have
trivial symmetry group

What is round?

The roundness $r(X)$ of a reasonable shape X (in 2 d) is the ratio of radii:

$$
r(X)=\frac{\text { inside fitting circle }}{\text { outside fitting circle }}
$$

- $(r(X)=1) \Rightarrow($ Constant width $)$, but \square
- Determining the roundness in practice is an important problem in engineering
- There is a similar definition in any dimension

Thank you for your attention!

I hope that was of some help.

