What is...the Jordan curve theorem?

Or: Come on, that's trivial...

The Jordan curve theorem

Any non-self-intersecting continuous loop in \mathbb{R}^{2} divides \mathbb{R}^{2} in interior and exterior
That is trivially true, so we are done

Everyone knows what a curve is...

Maybe this is not trivial...there are many "curves"!

A curve with positive area!?

- The curve above divides \mathbb{R}^{2} into interior and exterior and has positive area
- The quest for a proof triggered the first steps towards fractal geometry
- "Most" curves are crazy

Enter, the theorem

The statement is true and generalizes:

- Any compact connected n-manifold X in \mathbb{R}^{n+1} divides \mathbb{R}^{n+1} in interior and exterior
- For $n=2$ both regions are \cong to interior and exterior of a standard circle

- If X is a locally flat n-sphere, then both regions are \cong to interior and exterior of S^{n}

A part of graph theory?

- Classical Jordan curve theorem $\Rightarrow K_{3,3}$ is not planar
- Surprising Jordan curve theorem $\Leftarrow K_{3,3}$ is not planar
- Mind blowing (imho) Jordan curve theorem $\Leftrightarrow K_{3,3}$ is not planar

Thank you for your attention!

I hope that was of some help.

