What is...the Jordan curve theorem?

Or: Come on, that's trivial...

The Jordan curve theorem

Any non-self-intersecting continuous loop in \mathbb{R}^2 divides \mathbb{R}^2 in interior and exterior

That is trivially true, so we are done

Everyone knows what a curve is...

...or not?

Maybe this is not trivial...there are many "curves"!

A curve with positive area!?

- \blacktriangleright The curve above divides \mathbb{R}^2 into interior and exterior and has $% \mathbb{R}^2$ positive area
- ► The quest for a proof triggered the first steps towards fractal geometry

"Most" curves are crazy

The statement is true and generalizes:

- ▶ Any compact connected *n*-manifold X in \mathbb{R}^{n+1} divides \mathbb{R}^{n+1} in interior and exterior
- ▶ For n = 2 both regions are \cong to interior and exterior of a standard circle

▶ If X is a locally flat *n*-sphere, then both regions are \cong to interior and exterior of S^n

A part of graph theory?

• Classical Jordan curve theorem $\Rightarrow K_{3,3}$ is not planar

• Surprising Jordan curve theorem $\leftarrow K_{3,3}$ is not planar

• Mind blowing (imho) Jordan curve theorem $\Leftrightarrow K_{3,3}$ is not planar

Thank you for your attention!

I hope that was of some help.