What is...a Coxeter group?

$$
\text { Or: What is... } 1, \infty, 3,5,3,4,4,4,3,3,3,3, \ldots \text { ? }
$$

Enter, symmetry

- A symmetry is an operation that does not change the object
- Mathematically, these form a certain algebraic structure called a group

Human face $-\mathbb{Z} / 2 \mathbb{Z}$ symmetry

Tomb in egypt - Translations+reflections

Ammonia - S_{3} symmetry

Earth $-\infty$ many symmetries

Symmetries of a regular polygon P

- For a flag in P there are associated reflections s, t, u
- The group of symmetries G of P admits the presentation

$$
G \cong\left\langle s, t, u \mid s^{2}=t^{2}=u^{2}=1,(s t)^{m(s, t)}=(t u)^{m(t, u)}=(s u)^{m(s, u)}=1\right\rangle
$$

- This datum is determined by a graph Γ (edges 2 and labels 3 are omitted)

Enter, the theorem

A group generated by reflections is finite if and only if 「s components are of the form

$\bullet \frac{6}{G_{2}} \bullet \quad \stackrel{5}{H_{2}}$ •
$\bullet \frac{n}{I_{n}} \bullet \quad \bullet \frac{5}{H_{3}} \bullet$
$\stackrel{5}{\mathrm{H}_{4}} \bullet \bullet$ •

- This classifies the finite reflection symmetries
- This generalizes Platonic solids: non-branching graphs m regular polygons

Water, ammonia and methane

- Coxeter groups of type A are symmetric groups
- So Coxeter groups also generalize symmetric groups

Thank you for your attention!

I hope that was of some help.

