What is...the curse of dimensionality?

Or: Hyperballs do not exist! Well, kind of...

Hypercubes and hyperballs

- The unit n-ball is $B^{n}=\left\{x \in \mathbb{R}^{d} \mid \sum_{i} x_{i}^{2} \leq 1\right\}$ Interior of a balloon
- The surrounding n-cube is $I^{n}=\left\{x \in \mathbb{R}^{d} \mid-1 \leq x_{i} \leq 1\right\}$ Interior of a box
- What is the volume ratio $V\left(B^{n}\right) / V\left(I^{n}\right)$? Ball in a box

Movies!

- Most movie frames do not contain spheres More vertices than faces
- Conjecture $V\left(B^{n}\right) / V\left(I^{n}\right) \xrightarrow{n \rightarrow \infty} 0$
- $V\left(I^{n}\right)=2^{n}$ and we need a formula for $V\left(B^{n}\right)$

The surrounding n-sphere

- The n-cube surrounding the unit n-ball has always side length $s=2$
- The n-ball surrounding the unit n-cube has $r=\sqrt{n} / 2 \xrightarrow{n \rightarrow \infty} \infty$
- What does this imply?

Enter, the theorem

The volume of the n-ball of radius r is

$$
V\left(B_{r}^{n}\right)=\frac{1}{\Gamma(n / 2+1)} \pi^{n / 2} r^{n}= \begin{cases}\frac{1}{k!} \pi^{k} r^{2 k} & n=2 k \\ \frac{2(k!)}{(2 k+1)!}(4 \pi)^{k} r^{2 k+1} & n=2 k+1\end{cases}
$$

In particular, the volume of the unit ball goes to zero $V\left(B^{n}\right) \xrightarrow{n \rightarrow \infty} 0$

This is surprising because humans can not comprehend higher dimensions

Why dimension 5 ?

- The volume function has its peak at $n \approx 5$
- The peak is \approx determined by the race between $\pi^{n / 2}$ and ($n / 2$)!
- So nothing is special about 5 - its about the value of π

Thank you for your attention!

I hope that was of some help.

