What is...Polya's theorem?

Or: Birds get lost

The coin flip experiment on a line

- Fix \mathbb{Z} as our underlying world
- Flip a coin and move along \mathbb{Z} by +1 for heads and -1 for tails Random

HHTH:

THHT:

You always come home

USD-Euro exchange rate

- Expected distance from origin $\rightarrow \sqrt{n}$ Arbitrary far away from home
- A random walk will cross the origin eventually A 1d walker will return home

You always come home - even in \mathbb{Z}^{2}

- Expected distance from origin $\rightarrow \sqrt{n}$ Arbitrary far away from home
- A random walk will cross the origin eventually A 2d walker will return home

Enter, the theorem

For random walks on \mathbb{Z}^{d} we have:

- The expected average distance from the origin is

$$
\sim \sqrt{n} \cdot c(d) \text { where } c(d)=\text { constant depending on } d
$$

Arbitrary far away from home

- A random walk will cross the origin eventually with probability

d	1	2	3	4	5	6	7	8
$\%$	1	1	≈ 0.34	≈ 0.19	≈ 0.14	≈ 0.10	≈ 0.09	≈ 0.07

A 3d walker will not necessarily return home
drunk human will return home:

drunk bird might get lost:

- Say Paris is 6000 m in radius
- Start at Paris' center, get drunk and random walk with step 1 m
- You will revisit Paris' center with about 85% chance before you leave Paris
$\%$ that a random walk on \mathbb{Z}^{2} gets more than distance n away from the origin without revisiting it is approximately $\approx\left(1.0293737+\frac{2}{\pi} \ln (n)\right)^{-1}$

Thank you for your attention!

I hope that was of some help.

