What are...Chebyshev polynomials?

Or: Fibonacci with signs?

The Fibonacci polynomials

- Fibonacci polynomials are defined by

$$
F_{0}(X)=0, F_{1}(X)=1 \text { and } F_{n}(X)=X \cdot F_{n-1}(X)+F_{n-2}(X)
$$

- Coefficients \longleftrightarrow Pascal's triangle; $F_{n}(1)=n$th Fibonacci number

The Chebyshev polynomials

$$
\begin{aligned}
& 1 \\
& 1 \text {-1 } \\
& 1 \quad-2 \quad 1 \\
& \begin{array}{llll}
1 & -3 & 3 & -1
\end{array} \\
& \begin{array}{lllll}
1 & -4 & 6 & -4 & 1
\end{array} \\
& \begin{array}{llllll}
1 & -5 & 10 & -10 & 5 & -1
\end{array} \\
& \begin{array}{lllllll}
1 & -6 & 15 & -20 & 15 & -6 & 1
\end{array} \\
& \begin{array}{llllllll}
1 & -7 & 21 & -35 & 35 & -21 & 7 & -1
\end{array} \\
& \begin{array}{lllllllll}
1 & -8 & 28 & -56 & 70 & -56 & 28 & -8 & 1
\end{array} \\
& \begin{array}{llllllllll}
1 & -9 & 36 & -84 & 126 & -126 & 84 & -36 & 9 & -1
\end{array} \\
& \begin{array}{lllllllllll}
1 & -10 & 45 & -120 & 210 & -252 & 210 & -120 & 45 & -10 & 1
\end{array}
\end{aligned}
$$

- Chebyshev polynomials (second kind and normalized) are defined by

$$
U_{0}(X)=0, U_{1}(X)=1 \text { and } U_{n}(X)=X \cdot U_{n-1}(X)-U_{n-2}(X)
$$

- Coefficients signed Pascal's triangle; $i^{n+1} U_{n}(i)=n$th Fibonacci number

The Chebyshev roots

The Chebyshev roots $2 \cos (k \pi / n)$ are ubiquitous in mathematics

Enter, the theorems

Here are several facts about $U_{n}(X)$:

- Every algebraic integer whose conjugates are in] $-2,2\left[\right.$ is a root of a $U_{n}(X)$; all roots of a $U_{n}(X)$ are algebraic integer whose conjugates are in] $-2,2[$
"Minimal algebraic integers"
- The $U_{n}(X)$ for $n>0$ form a basis of $\mathbb{Z}[X]$ Division free

$$
\text { Example. } X^{5}=U_{6}(X)+4 \cdot U_{4}(X)+5 \cdot U_{2}(X)
$$

- The previous bullet point is even non-negative, i.e. $X^{m}=\mathbb{N}$-sum of $U_{n}(X)$
- The $U_{n}(X)$ are the simple characters of $\mathrm{SL}_{2}(\mathbb{C})$ Representation theory

$$
\begin{gathered}
U_{1}(x)=1 \Leftrightarrow \mathbb{C}, \quad U_{2}(x)=X \Leftrightarrow \mathbb{C}^{2}, \\
U_{3}(x)=X^{2}-1 \text { \&ym } \mathbb{C}^{2} \subset \mathbb{C}^{2} \otimes \mathbb{C}^{2} \cong \operatorname{Sym}^{2} \mathbb{C}^{2} \oplus \mathbb{C}, \quad \text { etc. }
\end{gathered}
$$

- Many more, e.g. classification of root and Coxeter systems, integral matrices...

Runge's phenomenon for $f(x)=1 /\left(1+25 x^{2}\right)$

Chebyshev (first kind) spaced points
error in interpolant

error in interpolant
0.00010 0.000
0.0 god 8 adodgo O Nobo Na
 -1

Error $\rightarrow \infty$ for high-degree polynomial interpolation at equidistant points
Error $\rightarrow 0$ for high-degree polynomial interpolation at Chebyshev points

Thank you for your attention!

I hope that was of some help.

