What is...reverse mathematics?

Or: Thinking backwards

The inputs of $a^{2}+b^{2}=c^{2}$

What inputs does this proof need? Do all proofs need the same inputs?

Euclid's axioms

- 1 Between two points there is a line
- 2 Finite lines can be extended to infinite lines
- 3 Circles can be drawn
- 4 All right angles are congruent
- 5 The sum of angles in a triangle is 180 degrees
- I Some implicit "rules of common sense"

Ups, Pythagoras theorem is equivalent to 5

Euclidean Geometry

$a^{2}=b^{2}+c^{2}$

$\cos a=\cos b \times \cos c$

Hyperbolic Geometry

$\cosh \mathrm{a}=\cosh \mathrm{b} \times \cosh \mathrm{c}$

- $1+2+3+4+5+\mathrm{I} \Rightarrow$ Pythagoras theorem
- $1+2+3+4+$ Pythagoras theorem $+\mathrm{I} \Rightarrow 5$ A bit tricky but true
- $1+2+3+4+5+$ I makes sense Euclidean geometry
- $1+2+3+4+$ "Not 5 " +I makes sense Spherical/hyperbolic geometry

We just discovered reverse mathematics!

Enter, the theorem/philosophy!

Reverse mathematics seeks right axioms to prove theorems already known
When the theorem is proved from the right axioms,
the axioms can be proved from the theorem - Friedman
Reverse mathematics is part of logic, using first- ("the axioms of natural numbers"), second- ("the axioms of real numbers") or higher-order arithmetic ("beyond")

- Peano's arithmetic (PA) is first-order logic and too weak to formulate \mathbb{R}
- Second-order arithmetic $\left(\mathrm{Z}_{2}\right)$ is strong enough to formulate \mathbb{R}

Examples of "equal" theorems

$$
\begin{aligned}
& \mathrm{RCA}_{0} \text { proves } \text { Intermediate Value Theorem. } \\
& \mathrm{WKL}_{0} \text { proves } \text { Sequential Heine-Borel Theorem } \\
& \Leftrightarrow \text { Uniform Continuity Theorem } \\
& \Leftrightarrow \text { Extreme Value Theorem } \\
& \Leftrightarrow \text { Riemann Integrability of Continuous Functions } \\
& \Leftrightarrow \text { Brouwer Fixed Point Theorem } \\
& \Leftrightarrow \text { Jordan Curve Theorem } \\
& \text { (Equivalences provable in } \mathrm{RCA}_{0} \text {). } \\
& \mathrm{ACA}_{0} \text { proves } \quad \text { Kőnig Infinity Lemma } \\
& \Leftrightarrow \text { Sequential Bolzano-Weierstrass Theorem } \\
& \Leftrightarrow \text { Sequential Least Upper Bound Property } \\
& \Leftrightarrow \text { Cauchy Convergence Criterion } \\
& \text { (Equivalences provable in RCA }{ }_{0} \text {). }
\end{aligned}
$$

Brouwer

Jordan

Thank you for your attention!

I hope that was of some help.

