> What is...the Mason-Stothers theorem?

Or: The ABC of polynomials

$A B C$ in number theory

$a+b=c$ coprime, $\operatorname{rad}(a, b, c)=$ product of distinct prime factors, then

$$
(*) c \leq \operatorname{rad}(a, b, c) \text { almost always }
$$

There are ~ 24 million triples not satisfying $(*)$ among all triples with $c<10^{18}$, e.g.

$$
\begin{aligned}
& a=7168, b=78125, c=85293 \\
& a+b=c: 2^{10} \cdot 7+5^{7}=3^{8} \cdot 13 \\
& \operatorname{rad}(a, b, c)=\operatorname{rad}\left(2^{10} \cdot 3^{8} \cdot 5^{7} \cdot 7 \cdot 13\right)=2730<c \\
& \operatorname{rad}(a, b, c) / c=\frac{70}{2187}=0.0320073<1 \\
& q(a, b, c)=q(7168,78125,85293)=1.43501>1
\end{aligned}
$$

Fermat in number theory

There are no non-trivial rational points on $X^{n}+Y^{n}=1$ (Fermat curve) for $n>2$

Fermat (known but famously difficult to prove) "follows directly from" ABC

Lets move to polynomials

$$
\begin{gathered}
a=(X+1) \cdot(X+2), b=2 X^{4}, c=a+b \\
c=2 X^{4}+X^{2}+3 X+2
\end{gathered}
$$

$$
\operatorname{rad}(a, b, c)=(X+1) \cdot(X+2) \cdot X \cdot\left(2 X^{4}+X^{2}+3 X+2\right)
$$

Note that the degree of c is lower than the degree of $\operatorname{rad}(a, b, c)$:

$$
4=\operatorname{deg}(c) \leq \operatorname{deg}(\operatorname{rad}(a, b, c))=7
$$

$$
\begin{gathered}
a=(X+1)^{3} \cdot(X+2)^{5}, b=2 X^{4}, c=a+b \\
c=X^{8}+13 X^{7}+73 X^{6}+231 X^{5}+452 X^{4}+552 X^{3}+416 X^{2}+176 X+32 \\
\operatorname{rad}(a, b, c)=(X+1) \cdot(X+2) \cdot X \cdot\left(X^{8}+\mathrm{REST}\right)
\end{gathered}
$$

Note that the degree of c is lower than the degree of $\operatorname{rad}(a, b, c)$:

$$
8=\operatorname{deg}(c) \leq \operatorname{deg}(\operatorname{rad}(a, b, c))=11
$$

Enter, the theorem

$a+b=c$ coprime polynomial in $\mathbb{R}_{\geq 0}[X]$, not all constant, $\operatorname{rad}(a, b, c)=$ product of distinct irreducible factors, then

$$
\operatorname{deg}(c) \leq \operatorname{deg}(\operatorname{rad}(a, b, c)) \text { always }
$$

- Actually we can write $\operatorname{deg}(\operatorname{rad}(a, b, c))-1$ on the right-hand side; this is a sharp bound:

$$
\begin{gathered}
a=X^{4}, b=(2 X+1) \cdot\left(2 X^{2}+2 X+1\right), c=(X+1)^{4} \\
4=\operatorname{deg}(c) \leq \operatorname{deg}(\operatorname{rad}(a, b, c))=\operatorname{deg}\left(X \cdot(2 X+1) \cdot\left(2 X^{2}+2 X+1\right) \cdot(X+1)\right)=5
\end{gathered}
$$

- There are various versions of this theorem; an appropriate formulation holds over $\mathbb{K}[X]$ for any field \mathbb{K}
- There is a slick proof of this theorem which is roughly $1 / 2$ of a page long

Fermat in polynomials

There are no non-trivial $\mathbb{Q}(t)$-rational points on $X^{n}+Y^{n}=1$ for $n>2$

Polynomial Fermat follows directly from polynomial ABC

Thank you for your attention!

I hope that was of some help

