What is...the pea and the sun paradox?

Or: One orange equals two oranges

This "paradox" is true

An orange may be separated into a finite number of pieces and reassembled into two oranges identical to the original

- You can do with 5 pieces
- No reshaping needed Rotations are the key
- There are some set theoretical issues Axiom of choice (AoC)

- The rotations τ and σ form an infinite group G
- Partition G into three subsets G_{1}, G_{2} and G_{3}

- We get associated poles P on S^{2}

Enter, (AoC)

- G partitions $S^{2} \backslash P$ into orbits, take one piece per orbit and obtain C AoC
- $K_{i}=G_{i} \subset C$, and we get the Hausdorff partition of the sphere S^{2}

$$
S^{2} \backslash P=K_{1} \cup K_{2} \cup K_{3}, \quad K_{1} \approx K_{2} \approx K_{3} \approx\left(K_{2} \cup K_{3}\right)
$$

- This is weird: K_{i} are " $\frac{1}{3}$ of $S^{2} \backslash P^{\prime \prime}$ but $K_{2} \cup K_{3}$ is also " $\frac{1}{3}$ of $S^{2} \backslash P^{\prime \prime}$
- Use " $\frac{1}{3}$ of $S^{2} \backslash P^{\prime \prime} K_{2} \cup K_{3}$ to create a second copy of $S^{2} \backslash P$
- Thicken the whole story to the orange (a.k.a. 3-ball)

Enter, the theorem

Banach-Tarski A solid ball may be separated into a finite number of pieces and reassembled into two solid balls identical in shape and volume to the original

- The partitions from before are a bit like cosmic microwave background:

- This theorem can not be proven without (AoC)
- One can beef the theorem up and obtain infinitely many copies

The pea and the sun

If A and B are any two bounded 3d sets with non-empty interiors than $A \approx B$

Thank you for your attention!

I hope that was of some help.

