What is...Euler's polyhedron formula?

Or: 2000 years of not doing the count.

The soccer ball

Random(?) fact. We have $V-E+F=2$ "vertices - edges + faces $=2$ "

The platonic solids - and Euler counted

$$
\text { Tetrahedron }-\mathrm{V}=4, \mathrm{E}=6, \mathrm{~F}=4
$$

Octahedron $-\mathrm{V}=6, \mathrm{E}=12, \mathrm{~F}=8$

Dodecahedron - $V=20, E=30, F=12$

Icosahedron - V=12, E=30,F=20

Euler's observation. We still have $V-E+F=2$

For connected plane graphs we have $V-E+F=1$:

Plane graph $1-V=20, E=30, F=11$

$$
\text { Plane graph } 2-V=20+1, E=30+3, F=11+2
$$

Proof? Induction (as illustrated)
Why = 1 and not $=2$? Well, there is an outside face which is not counted

Enter, the theorem!

For any spherical polyhedron we have $V-E+F=2$

There are dozens of known proofs - e.g. use plane graphs via stereographic projection

Matt Parker's (youtube: standupmaths) petition
Soccer signs in the UK - only hexagons:

This is impossible:

$$
V-E+F=2 F+3 F-F=0 \stackrel{!}{=} 2
$$

Thank you for your attention!

I hope that was of some help.

