What are...Catalan numbers?

Or: In praise of counting

How many ways are there to cut a regular n-gon into triangles?
 $14:$

Answer There are $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ many: $1,2,5,14, \ldots$

How many ways are there to bracket $n-1$ symbols?

Answer There are $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ many: $1,2,5,14, \ldots$

How many ways are there to not cross the diagonal in a $n \times n$ grid?

Answer There are $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ many: $1,2,5,14, \ldots$

Enter, the theorem

The Catalan numbers $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ count, among other things, the following:

- What we have seen
- $C_{n}=$ number of noncrossing partitions of $\{1, \ldots, n\}$

- $C_{n}=$ number of shuffles of $\{1, \ldots, n\}$ with no 3 -term increasing subsequence
- $C_{n}=$ number of Dyck words of length $2 n$
- Much more, see e.g. OEIS

This is probably the longest entry in the OEIS, and rightly so Quote from the OEIS entry A000108 (Catalan numbers, of course)
$1,1,3,11,45,197,903,4279,20793,103049,518859,2646723,13648869$, 71039373, 372693519, 1968801519, 10463578353, 55909013009, 300159426963, 1618362158587, 8759309660445, 47574827600981, 259215937709463, 1416461675464871

These numbers count again many things, for example subdivisions:

Thank you for your attention!

I hope that was of some help.

